مدلسازی رفتار هیدرولیکی مخزن ضربه گیر ساده با استفاده از روش تفاضل محدود: مقایسه چهار روش مختلف

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، دانشکده عمران و حمل‌و‌نقل، دانشگاه اصفهان.

چکیده

در این تحقیق مدلسازی رفتار هیدرولیکی مخزن ضربه گیر ساده مورد بررسی می شود که در آن مخزن ضربه گیر ساده با دو فرض لوله بدون اصطکاک و با اصطکاک و در دو حالت بستن تدریجی و ناگهانی شیر بررسی می شود. معادلات حاکم بر مساله با استفاده از چهار روش از دسته روش های تفاضل های محدود به نام های اولر صریح، اولر ضمنی، حدس و اصلاح اولر و رانگ کوتای مرتبه چهارم حل شده و نتایج حاصل از حل مساله نمونه با استفاده از تمامی روش ها در حالت های مختلف، تجزیه و تحلیل می شود. مقایسه نتایج نشان دهنده انست که در تمامی حالت ها دامنه تغییرات سطح سیال با استفاده از روش اولر ضمنی در مقایسه با سایر روش ها کمتر می باشد. به عبارت دیگر در حالت لوله بدون اصطکاک، دامنه نوسانات بدست آمده با استفاده از روش اولر ضمنی به طور متوسط حدود 3 درصد کمتر از روش رانگ کوتای مرتبه چهار بوده و در حالت لوله با اصطکاک دامنه نوسانات بدست آمده با استفاده از روش اولر ضمنی به ترتیب به طور متوسط حدود 4، 3 و 2 درصد کمتر از روشهای اولر صریح، حدس و اصلاح اولر و رانگ کوتای مرتبه چهار می باشد. علاوه بر این در حالت لوله بدون اصطکاک نتایج در روش اولر ضمنی در مقایسه با سایر روش ها سریعتر همگرا شده و در حالت لوله با اصطکاک نتایج در روش رانگ کوتای مرتبه چهارم در مقایسه با سایر روش ها سریعتر همگرا می شود.

کلیدواژه‌ها


عنوان مقاله [English]

Hydraulic behavior modeling of the simple tank using the Finite Difference Method: a comparison of four different methods

نویسنده [English]

  • Ramtin Moeini
Assistant Professor, Department of Civil Engineering, Faculty of Civil Engineering and Transportation, University of Isfahan
چکیده [English]

In this paper, the hydraulic modeling of a simple surge tank with two assumptions of with or without friction condition at both gradually and suddenly valve closing is studied. The four different kinds of the finite difference method called the Explicit Euler, Implicit Euler, Predictor-Corrector Euler and Rung-Kutta methods are used to solve hydraulic equations and the results are presented and compared. Comparison of the results shows that in all cases, by using the Implicit Euler method, the fluid level variation is less than other available methods. In other words, the fluid level variation obtained using Implicit Euler is about 3 percent less than that obtained using Rung-Kutta method at without friction condition. In addition, at friction condition, the fluid level variation obtained using Implicit Euler is about 4, 3 and 2 percent less than that obtained using Explicit Euler, Predictor-Corrector Euler and Rung-Kutta methods, respectively. Moreover, the results converge faster than the other methods at without friction condition using Implicit Euler method and finally the results converge faster than the other methods at friction condition using Rung-Kutta method.

کلیدواژه‌ها [English]

  • Water hammer
  • Simple surge tank
  • Finite Difference Method
  • Numerical Modeling
[1] Izquierdo, J., & Iglesias, P.L. (2002), “Mathematical modeling of hydraulic transients in simple systems”, Mathematical and Computational Modeling, 35(7), 801–812.
[2] Wood, D.J., Lindireddy, S., Boulos, P.F., Karney, B., & Mcpherson, D.L. (2005), “Numerical methods for modeling transient flow”, Journal of American Water Works Association, 97(7), 104–15.
[3] Zhao, M., & Ghidaoui, M. (2004), “Godunov-type solutions for water hammer flows”, ASCE Journal of Hydraulic Engineering, 130(4), 341–8.
[4] Kendir, T.E., & Ozdamar, A. (2013), “Numerical and experimental investigation of optimum surge tank forms in hydroelectric power plant”, Renewable Energy, 60, 323-331.
[5] Sutton, B.A. (1960), “Series solutions of some surge tank problems”, Proc. Inst. Civil Engrs, 16, 225-233.
[6] France, P.W. (1977), “Comparison between experimental and numerical investigations of the motion of the water surface in a model surge tank”, Advances in Water Resources, 1(1), 49-51.
[7] France, P.W. (1980), “Surge tank water level variations following rapid valve opening”, Advances in Water Resources, 3(1), 41-3.
[8] France, P.W. (1983), “Finite element solution for mass oscillations in a surge tank”, Advances in Water Resources, 6(2), 200-204.
[9] France, P.W. (1984), “Mathematical models for surge analysis”, Engineering Analysis, 1(2), 107-9.
[10] France, P.W. (1996), “Finite element solution for mass oscillations in a surge tank on sudden valve opening”, Advances in Engineering Software, 26(3), 185-7.
[11] Gulhan, A. (1984). Study of water hammer in hydroelectric power plants by taking turbine and regulation characteristics into account. Master of Science Thesis, ITU, Istanbul [in Turkish].
[12] Gill, M.A., & Eke, O.C. (1987), “Mass oscillations in surge tanks on sudden opening of the valve”, Water Power Dam Constr., 36-39.
[13] Selek, B. (1993). Computerized calculation of surge tank oscillations and water hammers in hydraulic power plants. Master of Science Thesis, Adana: Cukurova University, [in Turkish].
[14] Vournas, C.D., & Papaioannou, G. (1995), “Modelling and stability of a hydro plant with two surge tanks”, Energy Conversion, IEEE Transaction, 10(2), 368-75.
[15] Nicolet, C., Avellan, F., Prénat, J.E., Sapin, A., & Simond, J.J. (2001), “A new tool for the simulation of dynamic behaviour of hydroelectric power plants”, In: 10th international meeting of the work group on the behaviour of hydraulic machinery under steady oscillatory conditions, project LMH e SIMSEN. Lausanne: IMHEF/EPFL, Norway.
[16] Nicolet, C. (2007). Hydroacoustic modelling and numerical simulation of unsteady operation of hydroelectric systems. Ph.D. Thesis. Lausanne, EPFL n_3751.
[17] Klasinc, R., & Bilus, I. (2009), “Experimental and numerical approach to surge tank improvements”, In: International symposium on water management and hydraulic engineering, paper A100, 339-48.
[18] Kim, S.H.(2010), “Design of surge tank for water supply systems using the impulse response method with the GA algorithm”, Journal of Mechanical Science and Technology, 24 (2), 629-636.
[19] Guo, L., Liu, Z., Geng, J., Li, D., & Du, G.S. (2013), “Numerical study of flow fluctuation attenuation performance of a surge tank”, Journal of Hydrodynamics, Ser. B, 25(6), 938-943.
[20] An, J.F., Zhang, J., Yu, X.D., & Chen, S. (2014), “Influence of flow field on stability of throttled surge tanks with standpipe”, Journal of Hydrodynamics, 25(2), 294-299.
[21] Skulovich, O., Perelman, L., & Osteld, A. (2013), “Bi-level Optimization of Closed Surge Tanks Placement and Sizing in Water Distribution System Subjected to Transient Events”, 16th Conference on Water Distribution System Analysis, WDSA 2014, Procedia Engineering, 89, 1329-1335.
[22] Chaudhry, M.H. (1979). Applied Hydraulic Transients. New York, USA: Van Nostrand Reinhold Company.
CAPTCHA Image