[1] Zhang ZX, Ping Y, He X. Self-Centering Shape Memory Alloy–Viscoelastic Hybrid Braces for Seismic Resilience. Materials. 2022; 15(7): 2349. doi: 10.3390/ma15072349
[2] Nguyen VQ, Nizamani ZA, Park D, Kwon OS. Numerical Simulation of Damage Evolution of Daikai Station During the 1995 Kobe Earthquake. Engineering Structures. 2020; 206: 110180. doi: 10.1016/j.engstruct.2020.110180
[3] Park R, Paulay T. Reinforced Concrete Structures. New York: Wiley; 1975.
[4] Zarrineghbal A, Zafarani H. Investigating Uncertainty in Seismic Design Maps Based on Hazard and Fragility Curves. Civil Infrastructure Researches. 2025; 11(1): 1-14. doi: 10.22091/cer.2024.11285.1572 [In Persian]
[5] Luo QB, Dai F, Liu Y, Gao MT. Numerical Modelling of the Near-Field Velocity Pulse-Like Ground Motions of the Northridge Earthquake. Acta Geophysica. 2020; 68(5): 993-1006. doi: 10.1007/s11600-020-00459-4
[6] McCormick J, Aburano H, Ikenaga M, Nakashima M. Permissible Residual Deformation Levels for Building Structures Considering Both Safety and Human Elements. In: Proceedings of the 14th World Conference on Earthquake Engineering; 2008; Beijing, China. Beijing: Seismological Press of China.
[7] Pourmirza R, Amirabadi R, Sharifi M. Experimental Evaluation of Seismic Performance of Pile-to-Deck Connections: A Case Study of Common Pile Caps in Iran. Civil Infrastructure Researches. 2025; 11(1): 167-183. doi: 10.22091/cer.2025.12047.1592 [In Persian]
[8] Xekalakis G, Perelli FL, Zuccaro G, Kyriakides N, Christou P. Developing Seismic Mitigation Measures for Sustainable Cities: A Structured Database Approach. In: Proceedings of the Ninth International Conference on Remote Sensing and Geoinformation of the Environment; 2023. doi: 10.1117/12.2680830
[9] Haseli B, Kheiri O. Seismic Damage Detection in Reinforced Concrete Piers of Kordestan–Mullasadra Bridges (Numerical Study) Using RID Functions and Tensor Method. Civil Infrastructure Researches. 2020; 5(2): 31-49. doi: 10.22091/cer.2019.4500.1156 [In Persian]
[10] Abdeli M, Manafpour A. Development and Experimental Validation of a New Self-Centering HF2V Damper with Disc Springs. Bulletin of Earthquake Engineering. 2022; 20(13): 7417-7440. doi: 10.1007/s10518-022-01495-9
[11] Karbaschi ME, Anvar SA. Evaluating the Accuracy of the FEMA-356 Proposed Equation for Effective Damping Ratio for Viscous and Viscoelastic Dampers. Amirkabir Journal of Civil Engineering. 2018; 50(2): 303-314. doi: 10.22060/ceej.2017.11416.5045 [In Persian]
[12] Shu Z, You R, Zhao Y. Viscoelastic Materials for Structural Dampers: A Review. Construction and Building Materials. 2022; 342: 127955. doi: 10.1016/j.conbuildmat.2022.127955
[13] Spencer BF Jr, Nagarajaiah S. State of the Art of Structural Control. Journal of Structural Engineering. 2003; 129(7): 845-856. doi: 10.1061/(ASCE)0733-9445(2003)129:7(845)
[14] Saaed TE, Nikolakopoulos G, Jonasson JE, Hedlund H. A State of the Art Review of Structural Control Systems. Journal of Vibration and Control. 2015; 21(5): 919-937. doi: 10.1177/1077546313478294
[15] Norihide K. State of the Art in Structural Control Technology. Journal of the Acoustical Society of Japan. 2006; 62(7): 539-544.
[16] Federal Emergency Management Agency. NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of Buildings (FEMA 274). Washington, DC: FEMA; 1997.
[17] Higgins C, Kasai K. Experimental and Analytical Simulation of Wind Response for a Full-Scale Viscoelastically Damped Steel Frame. Journal of Wind Engineering and Industrial Aerodynamics. 1998; 77-78: 297-313. doi: 10.1016/S0167-6105(98)00151-2
[18] Shu Z, You R, Xie Y. Viscoelastic Dampers for Vibration Control of Building Structures: A State of the Art Review. Journal of Earthquake Engineering. 2024; 28(12): 3558-3585. doi: 10.1080/13632469.2024.2345180
[19] Lago A, Trabucco D, Wood A. Damping Technologies for Tall Buildings: Theory, Design Guidance and Case Studies. Oxford: Butterworth-Heinemann; 2018; 533-711.
[20] The Japan Society of Seismic Isolation. Design and Construction Manual of Passive Damping Structure. 2nd ed. Tokyo: The Japan Society of Seismic Isolation; 2008.
[21] Castaldo P, De Iuliis M. Optimal Integrated Seismic Design of Structural and Viscoelastic Bracing Damper Systems. Earthquake Engineering & Structural Dynamics. 2014; 43(12): 1809-1827. doi: 10.1002/eqe.2425
[22] Cheng FY, Jiang H, Lou K. Smart Structures: Innovative Systems for Seismic Response Control. Boca Raton: CRC Press; 2008 Feb. doi: 10.1201/9781420008173
[23] Fathi F, Bahar O. Hybrid Coupled Building Control for Similar Adjacent Buildings. KSCE Journal of Civil Engineering. 2017; 21(1): 265-273. doi: 10.1007/s12205-016-0708-x
[24] Zhou Y, Gong SM, Lu XL. Study on Similarity of Hysteretic Loops and Characteristic Parameters of Viscoelastic Dampers with Test Verifications. Applied Mechanics and Materials. 2013; 353-356: 1970-1975. doi: 10.4028/www.scientific.net/AMM.353-356.1970
[25] Patri M, Reddy CV, Narasimhan C, Samui AB. Sequential Interpenetrating Polymer Network Based on Styrene-Butadiene Rubber and Polyalkyl Methacrylates. Journal of Applied Polymer Science. 2007; 103(2): 1120-1126. doi: 10.1002/app.24338
[26] Xu ZD, Liao YX, Ge T, Xu C. Experimental and Theoretical Study of Viscoelastic Dampers with Different Matrix Rubbers. Journal of Engineering Mechanics. 2016; 142(8): 04016051. doi:10.1061/(ASCE)EM.1943-7889.0001101
[27] Paolacci F. An Energy-Based Design for Seismic Resistant Structures with Viscoelastic Dampers. Earthquakes and Structures. 2013; 4(2): 219-239. doi: 10.12989/eas.2013.4.2.219
[28] Cermak JE, Woo HGC, Lai ML, Chan J, Danielson SL. Aerodynamic Instability and Damping of a Suspension Roof. In: Proceedings of the 3rd Asia-Pacific Symposium on Wind Engineering; 1993; 699-704.
[29] Keel CJ, Mahmoodi P. Designing of Viscoelastic Dampers for Columbia Center Building. In: Isyumov N, Tschanz T, editors. Building Motion in Wind. Seattle, WA: American Society of Civil Engineers; 1986; 66-81.
[30] Yuan B, Chen M, Liu Y, Zhao S, Jiang H. Damping Properties of Para-Phenylene Terephthalamide Pulps-Modified Damping Materials. Journal of Reinforced Plastics and Composites. 2017; 36(2): 137-148. doi: 10.1177/0731684416673726
[31] Xu Z, Ge T, Liu J. Experimental and Theoretical Study of High-Energy Dissipation Viscoelastic Dampers Based on Acrylate-Rubber Matrix. Journal of Engineering Mechanics. 2020; 146(6): 04020057. doi: 10.1061/(ASCE)EM.1943-7889.0001802
[32] Hujare PP, Sahasrabudhe AD. Experimental Investigation of Damping Performance of Viscoelastic Material Using Constrained-Layer Damping Treatment. Procedia Materials Science. 2014; 5: 726-733. doi: 10.1016/j.mspro.2014.07.404
[33] Xia L, Li C, Zhang X, Wang J, Wu H, Guo S. Effect of Chain Length of Polyisobutylene Oligomers on the Molecular Motion Modes of Butyl Rubber: Damping Property. Polymer. 2018; 141: 70-78. doi: 10.1016/j.polymer.2018.01.083
[34] Capps RN, Beumel LL. Dynamic Mechanical Testing: Application of Polymer Development to Constrained-Layer Damping. In: Corsaro RD, Sperling LH, editors. Sound and Vibration Damping with Polymers. Washington, DC: American Chemical Society. 1990. doi: 10.1021/bk-1990-0424.ch004
[35] Roshan-Tabari F, Toopchi-Nezhad H, Hashemi-Motlagh G. Development and Testing of a Novel High-Damping Chlorobutyl Rubber for Structural Viscoelastic Damper Devices. Civil Engineering Infrastructures Journal. 2024; 57(2): 337-355. doi:10.22059/ceij.2023.363315.1951
[36] Ge T, Huang XH, Guo YQ, He ZF, Hu ZW. Investigation of Mechanical and Damping Performances of Cylindrical Viscoelastic Dampers in Wide Frequency Range. Actuators. 2021; 10(4): 71. doi: 10.3390/act10040071
[37] Zhou Y, Shi F, Ozbulut OE, Xu H, Zi D. Experimental Characterization and Analytical Modeling of a Large-Capacity High-Damping Rubber Damper. Structural Control and Health Monitoring. 2018; 26(6): e2183. doi: 10.1002/stc.2183
[38] Luo W, Li H, Zhou Y, Zhou H. Seismic Performance of Lead-Filled Steel Tube Damper: Laboratory Test, Parameter Identification and Application. Engineering Structures. 2020; 219: 110764. doi: 10.1016/j.engstruct.2020.110764
[39] Gauron O, Tremblay R, Labelle J. Seismic Control of a Three-Story Steel Structure Using Elastomeric Dampers and Chevron Braces. Sherbrooke University Technical Report. TR–SUS-2015-05. 2015.
[40] Zhang Y, Li J, Wang H, Chen X, Zhang L. Experimental Research on Seismic Behavior of Haunched Concrete Beam–Column Joint Based on the Bolt Connection. Sustainability. 2022; 14(5): 2985. doi: 10.3390/su14052985
[41] Nasab MSE, Kim J. Seismic Retrofit of Structures Using Hybrid Steel Slit–Viscoelastic Dampers. Journal of Structural Engineering. 2020; 146(11): 04020238. doi: 10.1061/(ASCE)ST.1943-541X.0002816
[42] Shen KL, Soong TT, Chang KC, Lai ML. Seismic Behaviour of Reinforced Concrete Frame with Added Viscoelastic Dampers. Engineering Structures. 1995; 17(5): 372-380. doi: 10.1016/0141-0296(95)00020-8
[43] Tsai CS. Temperature Effect of Viscoelastic Dampers During Earthquakes. Journal of Structural Engineering. 1994; 120(2): 394-409. doi: 10.1061/(ASCE)0733-9445(1994)120:2(394)
[44] Xu ZD, Wang DX, Shi CF. Model, Tests and Application Design for Viscoelastic Dampers. Journal of Vibration and Control. 2011; 17(9): 1359-1370. doi: 10.1177/1077546310373617
[45] Gillani A. Development of Material Model Subroutines for Linear and Nonlinear Response of Elastomers. Master’s thesis. London (ON): The University of Western Ontario. 2018.
[46] Chen B, Dai J, Song T, Guan Q. Research and Development of High-Performance High-Damping Rubber Materials for High-Damping Rubber Isolation Bearings: A Review. Polymers. 2022; 14(12): 2427. doi: 10.3390/polym14122427
[48] Rijnen MWLM, Pasteuning F, Fey RHB, van Schothorst G, Nijmeijer H. A Numerical and Experimental Study on Viscoelastic Damping of a 3D Structure. Journal of Sound and Vibration. 2015; 349: 80-98. doi: 10.1016/j.jsv.2015.03.053
[49] Syed RUH, Sabir MI, Jiang W, Shi DY. Effect of Viscoelastic Material Thickness of Damping Treatment Behavior on Gearbox. Research Journal of Applied Sciences, Engineering and Technology. 2012; 4(17): 3130-3136.
ارسال نظر در مورد این مقاله