بررسی تجربی رفتار مکانیکی میراگر ویسکوالاستیک استوانه‌ای بر پایه پلیمر کلروبوتیل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه ارومیه، ارومیه، ایران.

2 استادیار گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه ارومیه، ارومیه، ایران.

چکیده

در دهه‌های اخیر، میراگرهای ویسکوالاستیک به‌دلیل هزینه‌ مناسب، سهولت ساخت و قابلیت اتلاف انرژی بالا، توجه بسیاری از پژوهشگران را به خود جلب کرده‌اند. مشخصات مکانیکی این میراگرها به‌طور مستقیم تحت تأثیر خواص مواد پلیمری به‌کار رفته در ساخت آن‌هاست. این مواد از تنوع ساختاری بالایی برخوردارند و نسبت به دامنه‌ جابه‌جایی، فرکانس بارگذاری، دما و شکل هندسی حساس‌اند. بنابراین، یافتن ترکیب مناسب ماده‌ ویسکوالاستیک برای ساخت میراگری با عملکرد مطلوب، فرایندی پیچیده و زمان‌بر است. در این پژوهش، ابتدا با ساخت میراگرهای صفحه‌ای در ابعاد کوچک، دو نوع ترکیب پلیمری بر پایه‌ لاستیک طبیعی و لاستیک کلروبوتیل مقایسه شد. نتایج بارگذاری سیکلی نشان داد که میراگر ساخته‌شده با پلیمر کلروبوتیل، عملکرد میرایی به‌مراتب بهتری نسبت به نمونه‌ ساخته‌شده با لاستیک طبیعی دارد. بر همین اساس، میراگرهای استوانه‌ای در مقیاس واقعی با استفاده از ترکیب پلیمری کلروبوتیل ساخته شدند و تحت بارگذاری سیکلی با جک هیدرولیکی آزمایش شدند. هدف بررسی تأثیر عواملی نظیر نرخ بارگذاری، ضخامت لایه‌ ویسکوالاستیک و کرنش‌های مختلف بر رفتار مکانیکی این میراگرها بود. نتایج نشان داد که افزایش نرخ بارگذاری و کرنش منجر به افزایش میرایی و ظرفیت باربری می‌شود. همچنین، کاهش ضخامت لایه‌ ویسکوالاستیک، با وجود تأثیر اندک بر میرایی، باعث افزایش ظرفیت باربری شد. میراگرهای ساخته‌شده، حتی در کرنش‌های بالا، در برابر بارگذاری سیکلی بدون وقوع شکست مکانیکی مقاومت کردند و اتلاف انرژی قابل‌توجهی نشان دادند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Mechanical Behavior of a Cylindrical Chlorobutyl-Based Viscoelastic Damper: An Experimental Study

نویسندگان [English]

  • Sanam Ansarighadim 1
  • Alireza Manafpour 2
1 Department of Civil Engineering, Faculty of Engineering, University of Urmia, Urmia, Iran
2 Assistant Professor, Department of Civil Engineering, Faculty of Engineering, University of Urmia, Urmia, Iran.
چکیده [English]

In recent decades, viscoelastic dampers have attracted the attention of many researchers due to their reasonable cost, ease of construction, and high energy dissipation capacity. The mechanical characteristics of these dampers are directly influenced by the properties of the polymeric materials used in their fabrication. Such materials are sensitive to displacement amplitude, loading frequency, temperature, and geometry, making the process of finding a suitable viscoelastic composition for damper design both complex and time-consuming. In this study, small-scale planar dampers were first constructed to compare two polymeric compositions: one based on natural rubber and the other on chlorobutyl rubber. The results of cyclic loading tests showed that the viscoelastic damper made with chlorobutyl polymer exhibited significantly better damping performance than the one made with natural rubber. Based on these findings, full scale cylindrical dampers were fabricated using the chlorobutyl based composition and tested under cyclic loading with a hydraulic jack. The goal was to investigate the effects of loading rate, thickness of the viscoelastic layer, and applied strain. The results indicated that increasing the loading rate and strain led to greater energy dissipation and load bearing capacity. Additionally, while reducing the viscoelastic layer thickness had little impact on damping, it did enhance the load bearing capacity.

کلیدواژه‌ها [English]

  • Cylindrical Damper
  • Viscoelastic Material
  • Cyclic Loading
  • Chlorobutyl Rubber
[1] Zhang ZX, Ping Y, He X. Self-Centering Shape Memory Alloy–Viscoelastic Hybrid Braces for Seismic Resilience. Materials. 2022; 15(7): 2349. doi: 10.3390/ma15072349
[2] Nguyen VQ, Nizamani ZA, Park D, Kwon OS. Numerical Simulation of Damage Evolution of Daikai Station During the 1995 Kobe Earthquake. Engineering Structures. 2020; 206: 110180. doi: 10.1016/j.engstruct.2020.110180
[3] Park R, Paulay T. Reinforced Concrete Structures. New York: Wiley; 1975.
[4] Zarrineghbal A, Zafarani H. Investigating Uncertainty in Seismic Design Maps Based on Hazard and Fragility Curves. Civil Infrastructure Researches. 2025; 11(1): 1-14. doi: 10.22091/cer.2024.11285.1572 [In Persian]
[5] Luo QB, Dai F, Liu Y, Gao MT. Numerical Modelling of the Near-Field Velocity Pulse-Like Ground Motions of the Northridge Earthquake. Acta Geophysica. 2020; 68(5): 993-1006. doi: 10.1007/s11600-020-00459-4
[6] McCormick J, Aburano H, Ikenaga M, Nakashima M. Permissible Residual Deformation Levels for Building Structures Considering Both Safety and Human Elements. In: Proceedings of the 14th World Conference on Earthquake Engineering; 2008; Beijing, China. Beijing: Seismological Press of China.
[7] Pourmirza R, Amirabadi R, Sharifi M. Experimental Evaluation of Seismic Performance of Pile-to-Deck Connections: A Case Study of Common Pile Caps in Iran. Civil Infrastructure Researches. 2025; 11(1): 167-183. doi: 10.22091/cer.2025.12047.1592 [In Persian]
[8] Xekalakis G, Perelli FL, Zuccaro G, Kyriakides N, Christou P. Developing Seismic Mitigation Measures for Sustainable Cities: A Structured Database Approach. In: Proceedings of the Ninth International Conference on Remote Sensing and Geoinformation of the Environment; 2023. doi: 10.1117/12.2680830
[9] Haseli B, Kheiri O. Seismic Damage Detection in Reinforced Concrete Piers of Kordestan–Mullasadra Bridges (Numerical Study) Using RID Functions and Tensor Method. Civil Infrastructure Researches. 2020; 5(2): 31-49. doi: 10.22091/cer.2019.4500.1156 [In Persian]
[10] Abdeli M, Manafpour A. Development and Experimental Validation of a New Self-Centering HF2V Damper with Disc Springs. Bulletin of Earthquake Engineering. 2022; 20(13): 7417-7440. doi: 10.1007/s10518-022-01495-9
[11] Karbaschi ME, Anvar SA. Evaluating the Accuracy of the FEMA-356 Proposed Equation for Effective Damping Ratio for Viscous and Viscoelastic Dampers. Amirkabir Journal of Civil Engineering. 2018; 50(2): 303-314. doi: 10.22060/ceej.2017.11416.5045 [In Persian] 
[12] Shu Z, You R, Zhao Y. Viscoelastic Materials for Structural Dampers: A Review. Construction and Building Materials. 2022; 342: 127955. doi: 10.1016/j.conbuildmat.2022.127955
[13] Spencer BF Jr, Nagarajaiah S. State of the Art of Structural Control. Journal of Structural Engineering. 2003; 129(7): 845-856. doi: 10.1061/(ASCE)0733-9445(2003)129:7(845) 
[14] Saaed TE, Nikolakopoulos G, Jonasson JE, Hedlund H. A State of the Art Review of Structural Control Systems. Journal of Vibration and Control. 2015; 21(5): 919-937. doi: 10.1177/1077546313478294 
[15] Norihide K. State of the Art in Structural Control Technology. Journal of the Acoustical Society of Japan. 2006; 62(7): 539-544.
[16] Federal Emergency Management Agency. NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of Buildings (FEMA 274). Washington, DC: FEMA; 1997.
[17] Higgins C, Kasai K. Experimental and Analytical Simulation of Wind Response for a Full-Scale Viscoelastically Damped Steel Frame. Journal of Wind Engineering and Industrial Aerodynamics. 1998; 77-78: 297-313. doi: 10.1016/S0167-6105(98)00151-2
[18] Shu Z, You R, Xie Y. Viscoelastic Dampers for Vibration Control of Building Structures: A State of the Art Review. Journal of Earthquake Engineering. 2024; 28(12): 3558-3585. doi: 10.1080/13632469.2024.2345180
[19] Lago A, Trabucco D, Wood A. Damping Technologies for Tall Buildings: Theory, Design Guidance and Case Studies. Oxford: Butterworth-Heinemann; 2018; 533-711. 
[20] The Japan Society of Seismic Isolation. Design and Construction Manual of Passive Damping Structure. 2nd ed. Tokyo: The Japan Society of Seismic Isolation; 2008. 
[21] Castaldo P, De Iuliis M. Optimal Integrated Seismic Design of Structural and Viscoelastic Bracing Damper Systems. Earthquake Engineering & Structural Dynamics. 2014; 43(12): 1809-1827. doi: 10.1002/eqe.2425 
[22] Cheng FY, Jiang H, Lou K. Smart Structures: Innovative Systems for Seismic Response Control. Boca Raton: CRC Press; 2008 Feb. doi: 10.1201/9781420008173
[23] Fathi F, Bahar O. Hybrid Coupled Building Control for Similar Adjacent Buildings. KSCE Journal of Civil Engineering. 2017; 21(1): 265-273. doi: 10.1007/s12205-016-0708-x
[24] Zhou Y, Gong SM, Lu XL. Study on Similarity of Hysteretic Loops and Characteristic Parameters of Viscoelastic Dampers with Test Verifications. Applied Mechanics and Materials. 2013; 353-356: 1970-1975. doi: 10.4028/www.scientific.net/AMM.353-356.1970
[25] Patri M, Reddy CV, Narasimhan C, Samui AB. Sequential Interpenetrating Polymer Network Based on Styrene-Butadiene Rubber and Polyalkyl Methacrylates. Journal of Applied Polymer Science. 2007; 103(2): 1120-1126. doi: 10.1002/app.24338 
[26] Xu ZD, Liao YX, Ge T, Xu C. Experimental and Theoretical Study of Viscoelastic Dampers with Different Matrix Rubbers. Journal of Engineering Mechanics. 2016; 142(8): 04016051. doi:10.1061/(ASCE)EM.1943-7889.0001101 
[27] Paolacci F. An Energy-Based Design for Seismic Resistant Structures with Viscoelastic Dampers. Earthquakes and Structures. 2013; 4(2): 219-239. doi: 10.12989/eas.2013.4.2.219
[28] Cermak JE, Woo HGC, Lai ML, Chan J, Danielson SL. Aerodynamic Instability and Damping of a Suspension Roof. In: Proceedings of the 3rd Asia-Pacific Symposium on Wind Engineering; 1993; 699-704. 
[29] Keel CJ, Mahmoodi P. Designing of Viscoelastic Dampers for Columbia Center Building. In: Isyumov N, Tschanz T, editors. Building Motion in Wind. Seattle, WA: American Society of Civil Engineers; 1986; 66-81. 
[30] Yuan B, Chen M, Liu Y, Zhao S, Jiang H. Damping Properties of Para-Phenylene Terephthalamide Pulps-Modified Damping Materials. Journal of Reinforced Plastics and Composites. 2017; 36(2): 137-148. doi: 10.1177/0731684416673726
[31] Xu Z, Ge T, Liu J. Experimental and Theoretical Study of High-Energy Dissipation Viscoelastic Dampers Based on Acrylate-Rubber Matrix. Journal of Engineering Mechanics. 2020; 146(6): 04020057. doi: 10.1061/(ASCE)EM.1943-7889.0001802 
[32] Hujare PP, Sahasrabudhe AD. Experimental Investigation of Damping Performance of Viscoelastic Material Using Constrained-Layer Damping Treatment. Procedia Materials Science. 2014; 5: 726-733. doi: 10.1016/j.mspro.2014.07.404 
[33] Xia L, Li C, Zhang X, Wang J, Wu H, Guo S. Effect of Chain Length of Polyisobutylene Oligomers on the Molecular Motion Modes of Butyl Rubber: Damping Property. Polymer. 2018; 141: 70-78. doi: 10.1016/j.polymer.2018.01.083
[34] Capps RN, Beumel LL. Dynamic Mechanical Testing: Application of Polymer Development to Constrained-Layer Damping. In: Corsaro RD, Sperling LH, editors. Sound and Vibration Damping with Polymers. Washington, DC: American Chemical Society. 1990. doi: 10.1021/bk-1990-0424.ch004 
[35] Roshan-Tabari F, Toopchi-Nezhad H, Hashemi-Motlagh G. Development and Testing of a Novel High-Damping Chlorobutyl Rubber for Structural Viscoelastic Damper Devices. Civil Engineering Infrastructures Journal. 2024; 57(2): 337-355. doi:10.22059/ceij.2023.363315.1951 
[36] Ge T, Huang XH, Guo YQ, He ZF, Hu ZW. Investigation of Mechanical and Damping Performances of Cylindrical Viscoelastic Dampers in Wide Frequency Range. Actuators. 2021; 10(4): 71. doi: 10.3390/act10040071 
[37] Zhou Y, Shi F, Ozbulut OE, Xu H, Zi D. Experimental Characterization and Analytical Modeling of a Large-Capacity High-Damping Rubber Damper. Structural Control and Health Monitoring. 2018; 26(6): e2183. doi: 10.1002/stc.2183 
[38] Luo W, Li H, Zhou Y, Zhou H. Seismic Performance of Lead-Filled Steel Tube Damper: Laboratory Test, Parameter Identification and Application. Engineering Structures. 2020; 219: 110764. doi: 10.1016/j.engstruct.2020.110764 
[39] Gauron O, Tremblay R, Labelle J. Seismic Control of a Three-Story Steel Structure Using Elastomeric Dampers and Chevron Braces. Sherbrooke University Technical Report. TR–SUS-2015-05. 2015.
[40] Zhang Y, Li J, Wang H, Chen X, Zhang L. Experimental Research on Seismic Behavior of Haunched Concrete Beam–Column Joint Based on the Bolt Connection. Sustainability. 2022; 14(5): 2985. doi: 10.3390/su14052985 
[41] Nasab MSE, Kim J. Seismic Retrofit of Structures Using Hybrid Steel Slit–Viscoelastic Dampers. Journal of Structural Engineering. 2020; 146(11): 04020238. doi: 10.1061/(ASCE)ST.1943-541X.0002816 
[42] Shen KL, Soong TT, Chang KC, Lai ML. Seismic Behaviour of Reinforced Concrete Frame with Added Viscoelastic Dampers. Engineering Structures. 1995; 17(5): 372-380. doi: 10.1016/0141-0296(95)00020-8 
[43] Tsai CS. Temperature Effect of Viscoelastic Dampers During Earthquakes. Journal of Structural Engineering. 1994; 120(2): 394-409. doi: 10.1061/(ASCE)0733-9445(1994)120:2(394) 
[44] Xu ZD, Wang DX, Shi CF. Model, Tests and Application Design for Viscoelastic Dampers. Journal of Vibration and Control. 2011; 17(9): 1359-1370. doi: 10.1177/1077546310373617
[45] Gillani A. Development of Material Model Subroutines for Linear and Nonlinear Response of Elastomers. Master’s thesis. London (ON): The University of Western Ontario. 2018. 
[46] Chen B, Dai J, Song T, Guan Q. Research and Development of High-Performance High-Damping Rubber Materials for High-Damping Rubber Isolation Bearings: A Review. Polymers. 2022; 14(12): 2427. doi: 10.3390/polym14122427 
[48] Rijnen MWLM, Pasteuning F, Fey RHB, van Schothorst G, Nijmeijer H. A Numerical and Experimental Study on Viscoelastic Damping of a 3D Structure. Journal of Sound and Vibration. 2015; 349: 80-98. doi: 10.1016/j.jsv.2015.03.053 
[49] Syed RUH, Sabir MI, Jiang W, Shi DY. Effect of Viscoelastic Material Thickness of Damping Treatment Behavior on Gearbox. Research Journal of Applied Sciences, Engineering and Technology. 2012; 4(17): 3130-3136. 
 
CAPTCHA Image