[1] Menekşe, A., & Akdağ, H. C. (2022). Seismic Risk Analysis of Hospital Buildings: A Novel Interval-Valued Spherical Fuzzy ARAS. Journal of Risk Analysis and Crisis Response, 12(2). doi: 10.54560/jracr.v12i2.325
[2] Perrone, D., Aiello, M. A., Pecce, M., & Rossi, F. (2015). Rapid visual screening for seismic evaluation of RC hospital buildings. In Structures, 3, 57-70. doi: 10.1016/j.istruc.2015.03.002
[3] Cimellaro, G. P., Reinhorn, A. M., & Bruneau, M. (2010). Seismic resilience of a hospital system. Structure and Infrastructure Engineering, 6(1-2), 127-144. doi: 10.1080/15732470802663847
[4] Roshani, D., & Karimian, A. (2021). Earthquake Preparedness in Iranian Hospitals: A Systematic Review and Meta-Analysis. Bulletin of Emergency & Trauma, 9(1), 1-8. doi: 10.30476/beat.2021.86968
[5] Mohammad, A. F., Khan, R. A., Siddiqui, M. A., & Hammad, M. (2022). Case Study: Rapid Seismic Assessment of Existing Hospitals in Karachi. Engineering Proceedings, 22(1), 8-14. doi: 10.3390/engproc2022022008
[6] Ardalan, A., Najafi, A., Sabzghabaie, A., Zonoobi, V., Ardalan, S., Khankeh, H., & Zahabi, M. (2011). A pilot study: Development of a local model to hospital disaster risk assessment. Hospital Journal, 9(3 and 4), 7-14.
[7] Organization, W. H. (2015). Hospital safety index: Guide for evaluators. World Health Organization, ISBN: 9789241548984, CC BY-NC-SA 3.0 IGO.
[8] Pan American Health Organization. Emergency Preparedness, & Disaster Relief Coordination Program. (2000). Principles of disaster mitigation in health facilities. Pan American Health Org.
[9] Ayres, J. M., & Phillips, R. J. (1998). Water damage in hospitals resulting from the Northridge earthquake. ASHRAE Transactions, 104, 1286.
[10] Fleming, R. P. (1998). Analysis of fire sprinkler systems performance in the northridge earthquake. Grant/Contract Reports (NISTGCR), National Institute of Standards and Technology, Gaithersburg, MD, 98-736.
[11] Homma, M. (2015). Development of the Japanese national disaster medical system and experiences during the great east Japan earthquake. Yonago acta medica, 58(2), 53-61.
[12] Tokas, C., & Lobo, R. (2010). Risk based seismic evaluation of Pre-1973 hospital buildings using the HAZUS methodology. In Improving the Seismic Performance of Existing Buildings and Other Structures, 137-152. doi: 10.1061/41084(364)14
[13] UNICEF. (2004). Crisis appeal earthquake in Bam, Iran. New York: UNICEF.
[14] Miranda, E., Mosqueda, G., Retamales, R., & Pekcan, G. (2012). Performance of nonstructural components during the 27 February 2010 Chile earthquake. Earthquake spectra, 28(1_suppl1), 453-471. doi: 10.1193/1.4000032
[15] Yavari, S., Chang, S. E., & Elwood, K. J. (2010). Modeling post-earthquake functionality of regional health care facilities. Earthquake spectra, 26(3), 869-892. doi: 10.1193/1.3460359
[16] Pianigiani, M. (2015). Seismic resilience of hospitals. Doctoral dissertation, Technische Universität Braunschweig.
[17] Salinas, C., Salinas, C., & Kurata, J. (1998). The effects of the Northridge earthquake on the pattern of emergency department care. The American Journal of Emergency Medicine, 16(3), 254-256. doi: 10.1016/S0735-6757(98)90095-X
[18] Safaei, S., Naderpour, H., & Gerami, M. (2020). Reliability assessment of RC frames rehabilitated by eccentrically braces having vertical shear link. SN Applied Sciences, 2, 1-14. doi: 10.1007/s42452-020-2288-0
[19] Rouhi, H., Gholhaki, M., & Kheyroddin, A. (2017). Assesment and seismic rehabilitation of reinforced concrete building with large-scale external brace. Civil Infrastructure Researches, 3(1), 51-67. doi: 10.22091/cer.2017.1943.1077 [In Persian]
[20] Naderpour, H., Ghodrati Amiri, G., Kheyroddin, A., & Hoseini Vaez, S. R. (2011). Seismic evaluation of retrofitted RC frames using neuro-fuzzy algorithms. In Proceedings of the 8th International Conference on Structural Dynamics, EURODYN, 446-452.
[21] Rasoolan, I., & Mousavi, S. A. (2018). Vulnerability assessment of RC structures by adopting an approach covering constructional and environmental impacts and presenting rehabilitation solutions-a case study of Abadan Panje Mehr Stadium. Civil Infrastructure Researches, 3(2), 61-77. doi: 10.22091/cer.2017.2096.1083 [In Persian]
[22] Riga, E., Karatzetzou, A., Mara, A., & Pitilakis, K. (2017). Uncertainties in Seismic Risk Assessment at Urban Scale. The Case of Thessaloniki, Greece. Procedia environmental sciences, 38, 340-347. doi: 10.1016/j.proenv.2017.03.090
[23] Ahmadi, M., Naderpour, H., Kheyroddin, A., & Gandomi, A. H. (2017). Seismic failure probability and vulnerability assessment of steel-concrete composite structures. Periodica Polytechnica Civil Engineering, 61(4), 939-950. doi: 10.3311/PPci.10548
[24] Haji, M. (2017). Study of RC Structures with Different Floor in Progressive Collapse. Civil Infrastructure Researches, 2(2), 29-42. doi: 10.22091/cer.2017.827 [In Persian]
[25] Samadian, D., Ghafory-Ashtiany, M., Naderpour, H., & Eghbali, M. (2019). Seismic resilience evaluation based on vulnerability curves for existing and retrofitted typical RC school buildings. Soil Dynamics and Earthquake Engineering, 127, 105844. doi: 10.1016/j.soildyn.2019.105844
[26] Ghaychi Afrouz, S., Farzampour, A., Hejazi, Z., & Mojarab, M. (2021). Evaluation of seismic vulnerability of hospitals in the Tehran metropolitan area. Buildings, 11(2), 54-69. doi: 10.3390/buildings11020054
[27] Lazzali, F., & Farsi, M. N. (2020). Rapid Seismic Vulnerability Assessment of Buildings in the Old Algiers. Journal of Materials and Engineering Structures «JMES», 7(3), 377-387.
[28] Ali, S., & Sanghai, S. S. (2020). Seismic Vulnerability Assessment of RC Buildings of Nagpur (North-East) using Rapid Visual Screening. International Journal for Research in Applied Science & Engineering Technology, 8(VI), 630-637. doi: 10.22214/ijraset.2020.6103
[29] Bektaş, N., & Kegyes-Brassai, O. (2023). Development in Fuzzy Logic-Based Rapid Visual Screening Method for Seismic Vulnerability Assessment of Buildings. Geosciences, 13(1), 6. doi: 10.3390/geosciences13010006
[30] Myat Myat, A. M., & Nan, A. M. (2021). Seismic safety assessment of existing low-rise rc buildings with rapid visual screenings and preliminary evaluation methods. ASEAN Journal on Science and Technology for Development, 38(1), 29-36. doi: 10.29037/ajstd.649
[31] Sinha, A. K. (2022). Rapid visual screening vulnerability assessment method of buildings: a review. International Journal of Advanced Technology and Engineering Exploration, 9(88), 326-336. doi: 10.19101/IJATEE.2021.87460
[32] Haryanto, Y., Hu, H.-T., Han, A. L., Hidayat, B. A., Widyaningrum, A., & Yulianita, P. E. (2020). Seismic Vulnerability Assessment Using Rapid Visual Screening: Case Study of Educational Facility Buildings of Jenderal Soedirman University, Indonesia. Civil Engineering Dimension, 22(1), 13-21. doi: 10.9744/ced.22.1.13-21
[33] Guragain, R., & Dixit, A. M. (2004). Seismic vulnerability assessment of hospitals in Nepal. In 13th World Conference on Earthquake Engineering, Vancouver, Canadá.
[34] Clemente, S. J. C., Arreza, J. S. B., Cortez, M. A. M., Imperial, J. R. C., & Malabanan, M. J. F. (2020). Risk assessment of seismic vulnerability of all hospitals in Manila using rapid visual screening (RVS). In IOP Conference Series: Earth and Environmental Science, 479(1), 012002. doi: 10.1088/1755-1315/479/1/012002
[35] Jain, S. K., Mitra, K., Kumar, M., & Shah, M. (2010). A proposed rapid visual screening procedure for seismic evaluation of RC-frame buildings in India. Earthquake Spectra, 26(3), 709-729. doi: 10.1193/1.3456711
[36] Khan, S. U., Qureshi, M. I., Rana, I. A., & Maqsoom, A. (2019). Seismic vulnerability assessment of building stock of Malakand (Pakistan) using FEMA P-154 method. SN Applied Sciences, 1(12), 1625. doi: 10.1007/s42452-019-1681-z
[37] Boyd, O. S., Mueller, C. S., & Rukstales, K. S. (2007). Preliminary earthquake hazard map of Afghanistan. US Geological Survey Open-File Report, 2007, 1137.
[38] Naseri, M. K., & Kang, D. (2017). A primary assessment of society-based earthquake disaster mitigation in Kabul city, Afghanistan. Journal of Disaster Research, 12(1), 158-162. doi: 10.20965/jdr.2017.p0158
[39] Takabayashi, H. (2019). Seismic Hazard and Risk Assessment of Kabul, Afghanistan Risk Assessment is Piloted in 3 Gozars. UN-HABITAT Afghanistan-Iran Government.
[40] Crone, A. J. (2007). Earthquakes pose a serious hazard in Afghanistan, Retrieved from Geological Survey (US) 2327-6932.
[41] Zhang, J., Gurung, D. R., Liu, R., Murthy, M. S. R., & Su, F. (2015). Abe Barek landslide and landslide susceptibility assessment in Badakhshan Province, Afghanistan. Landslides, 12, 597-609. doi: 10.1007/s10346-015-0558-5
[42] Baruah, S., Dey, C., Chetia, T., Saikia, S., Molia, N., Borthakur, P., ... & Kayal, J. R. (2022). The June 2022 Afghanistan earthquake MW 6.2: Tectonic implications and Coulomb stress change. PREPRINT (Version 1) available at Research Square. doi: 10.21203/rs.3.rs-2336128/v1
[43] Ethiopia, K., & Somalia, S. S. (2022). Public health round-up. Bull World Health Organ, 100, 468-469. doi: 10.2471/BLT.22.011222
[44] Essar, M. Y., Nemat, A., Islam, Z., Ahmad, S., & Shah, J. (2022). Devastating earthquake in Afghanistan amid a humanitarian crisis: a call for action. The Lancet Global Health, 10(9), e1244-e1245. doi: 10.1016/S2214-109X(22)00318-7
[45] Ruleman, C. A., Crone, A., Machette, M., Haller, K., & Rukstales, K. (2007). Map and database of probable and possible Quaternary faults in Afghanistan. US Geological Survey Open-File Report, 1103(1), 39.
[46] Shnizai, Z. (2020). Mapping of active and presumed active faults in Afghanistan by interpretation of 1-arcsecond SRTM anaglyph images. Journal of Seismology, 24(6), 1131-1157. doi: 10.1007/s10950-020-09933-4
[47] Coskun, O., Aldemir, A., & Sahmaran, M. (2020). Rapid screening method for the determination of seismic vulnerability assessment of RC building stocks. Bulletin of Earthquake Engineering, 18, 1401-1416. doi: 10.1007/s10518-019-00751-9
[48] Quittmeyer, R., & Jacob, K. (1979). Historical and modern seismicity of Pakistan, Afghanistan, northwestern India, and southeastern Iran. Bulletin of the Seismological Society of America, 69(3), 773-823. doi: 10.1785/BSSA0690030773
[49] Ambraseys, N., & Bilham, R. (2014). The tectonic setting of Bamiyan and seismicity in and near Afghanistan for the past twelve centuries. After the Destruction of Giant Buddha Statues in Bamiyan (Afghanistan) in 2001: A UNESCO's Emergency Activity for the Recovering and Rehabilitation of Cliff and Niches, 101-152.
[50] Takabayashi, H. Urban disaster risk reduction strategy in fragile contexts: a case from Kabul, Afghanistan.
[51] Mohammadi, M., & Fujimi, T. (2016). Surveying earthquake vulnerabilities of district 13 of Kabul City, Afghanistan. International Journal of Civil and Environmental Engineering, 10(5), 642-652. doi: 10.5281/zenodo.1124841
[52] Reddy, M. D. K., Jeyashree, T., & Reddy, C. D. (2021). A Case Study on Vulnerability Risk Assessment of Buildings in Chennai Using Rapid Visual Screening. Annals of the Romanian Society for Cell Biology, 2183-2192.
[53] Harirchian, E., & Lahmer, T. (2019). Earthquake hazard safety assessment of buildings via smartphone app: A comparative study. In IOP Conference Series: Materials Science and Engineering, 652(1), 012069. doi: 10.1088/1757-899X/652/1/012069
[54] Kassem, M. M., Nazri, F. M., & Farsangi, E. N. (2020). The seismic vulnerability assessment methodologies: A state-of-the-art review. Ain Shams Engineering Journal, 11(4), 849-864. doi: 10.1016/j.asej.2020.04.001
[55] Kassem, M. M., Beddu, S., Ooi, J. H., Tan, C. G., Mohamad El-Maissi, A., & Mohamed Nazri, F. (2021). Assessment of seismic building vulnerability using rapid visual screening method through web-based application for Malaysia. Buildings, 11(10), 485. doi: 10.3390/buildings11100485
[56] Dung, C., & Care, U. G. C. (2022). RAIN WATER HARVESTING: A. Management, 827, 3383. doi: 10.37896/ymer21.08/09
[57] Kapetana, P., & Dritsos, S. (2007). Seismic assessment οf buildings by rapid visual screening procedures. Earthquake Resistant Engineering Structures VI, 93, 409.
[58] Harirchian, E., & Lahmer, T. (2020). Developing a hierarchical type-2 fuzzy logic model to improve rapid evaluation of earthquake hazard safety of existing buildings. In Structures, 1384-1399. doi: 10.1016/j.istruc.2020.09.048
[59] Ishack, S., Bhattacharya, S. P., & Maity, D. (2021). Rapid Visual Screening method for vertically irregular buildings based on Seismic Vulnerability Indicator. International journal of disaster risk reduction, 54, 102037. doi: 10.1016/j.ijdrr.2021.102037
[60] Rupakheti, D., & Apichayakul, P. (2019). Development of rapid visual screening form for Nepal based on the data collected from-its 2015 earthquake. In IOP Conference Series: Earth and Environmental Science, 365(1), 012027. doi: 10.1088/1755-1315/365/1/012027
[61] Ningthoujam, M., & Nanda, R. P. (2018). Rapid visual screening procedure of existing building based on statistical analysis. International Journal of Disaster Risk Reduction, 28, 720-730. doi: 10.1016/j.ijdrr.2018.01.033
[62] Federal Emergency Management Agency, FEMA P-154. (2015). Rapid visual screening of buildings for potential seismic hazards: a handbook. Federal, Washington, D.C. USA.
[63] Rojahn, C. (1988). Rapid visual screening of buildings for potential seismic hazards: A handbook, 21, Federal Emergency Management Agency.
[64] Özbay, A. E. Ö., Karapınar, I. S., & Ünen, H. C. (2020). Visualization of seismic vulnerability of buildings with the use of a mobile data transmission and an automated GIS-based tool. In Structures, 50-58. doi: 10.1016/j.istruc.2020.01.004
[65] Federal Emergency Management Agency, FEMA P-155. (2015). Rapid visual screening of buildings for potential seismic hazards: Supporting documentation: Government Printing Office. 3rd ed.; Washington, DC, USA.
[66] Yang, Y., & Goettel, K. A. (2007). Enhanced rapid visual screening (E-Rvs) method for prioritization of seismic retrofits in Oregon. Portland, OR, USA: Oregon Department of Geology and Mineral Industries.
[67] Rapid Seismic Evauation of Existing Building. (2008). Office of Deputy for Strategic Monitoring Burean of Technical Execution Systems. No. 364.
ارسال نظر در مورد این مقاله