توسعه مدل پیش‌بینی مدول برجهندگی خاک بستر رسی براساس نتایج آزمایش نفوذ مخروط با استفاده از روش رگرسیون چندجمله‌ای تکاملی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، دانشکده مهندسی عمران، دانشگاه صنعتی سیرجان، سیرجان، ایران

2 دانشجوی کارشناسی ارشد دانشکده مهندسی عمران، دانشگاه صنعتی سیرجان، ایران.

چکیده

تعیین دقیق مدول برجهندگی (Mr) خاک بستر روسازی یکی از عوامل مهم برای طراحی موفق سیستم روسازی است. این پارامتر معمولاً با استفاده از آزمایش سه محوری تکراری اندازه‌گیری می‌شود که آزمایشی پیچیده و گران‌قیمت است. در این پژوهش از روش رگرسیون چندجمله‌ای تکاملی (EPR) به‌منظور ارائه مدلی جهت پیش‌بینی مدول برجهندگی خاک بستر رسی بر اساس نتایج آزمایش نفوذ مخروط استفاده‌شده است. با بهره‌گیری از مدل‌ نمایی توسعه داده‌شده می‌توان مدول برجهندگی خاک بستر رسی را با داشتن پارامترهای مقاومت نوک مخروط (qc)، مقاومت اصطکاکی جداره (fs)، درصد رطوبت (w) و چگالی خشک (γd) محاسبه کرد. نتایج این تحقیق نشان می‌دهند که مدل توسعه داده‌شده توسط تابع نمایی بهترین مدل ساخته‌شده می‌باشد. بر اساس مدل توسعه داده‌شده، ضریب تعیین (R2) برای داده‌های آموزش، آزمون و کل داده‌ها به ترتیب برابر با 0.9808، 0.9714 و 0.9785 به دست آمد. تحلیل حساسیت انجام‌شده نیز نشان‌دهندۀ انطباق بسیار خوب مدل توسعه داده‌شده در پیش‌بینی مدول برجهندگی خاک بستر رسی می‌باشد. نتایج تحلیل حساسیت نشان داد که پارامتر w کم‌اهمیت‌ترین پارامتر برای پیش‌بینی مدول برجهندگی خاک‌های ریزدانه است و درجه اهمیت سایر پارامترها تقریباً یکسان است. در این تحقیق همچنین تأثیر پارامترهای مختلف بر مدول برجهندگی با استفاده از تحلیل پارامتریک ارزیابی‌شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Development of Predicting Model for Clay Subgrade Soil Resilient Modulus based on the Results of Cone Penetration Test using Evolutionary Polynomial Regression Method

نویسندگان [English]

  • Ali Reza Ghanizadeh 1
  • Ali Delaram 2
1 Associate Professor at Faculty of Civil and Environmental Engineering, Sirjan University of Technology, Sirjan, Iran.
2 M.S Student, Department of Civil Engineering, Sirjan University of Technology
چکیده [English]

Accurate determination of resilience modulus (Mr) of pavement subgrade soil is one of the important factors for successful design of pavement structure. This parameter is usually measured using a dynamic triaxial test, which is a complex and expensive experiment. In this study, the evolutionary polynomial regression (EPR) method has been used to develop a model for predicting the resilient modulus of clay subgrade soils based on the results of cone penetration test (CPT). By means of the developed model, the resilient modulus of subgrade soils can be estimated by having the parameters of cone tip resistance (qc), slave friction resistance (fs), moisture content (w) and dry density (γd). The results of this study show that the model developed by the exponential function is the best model constructed. Based on the developed model, the coefficient of determination (R2) for training set, testing set and total set was 0.9808, 0.9714 and 0.9785, respectively. The sensitivity analysis performed also showed the very good agreement of the developed model in predicting the resilient modulus of subgrade soil. The results of sensitivity analysis showed that the moisture content is the least important parameter for predicting the resilient modulus of fine-grained soils and the importance of other parameters is almost the same. In this study, the effect of different parameters on the resilient modulus of subgrade soil has also been evaluated using parametric analysis.

کلیدواژه‌ها [English]

  • Resilient Modulus
  • Clay Subgrade Soil
  • Cone Penetration Test (CPT)
  • Evolutionary Polynomial Regression (EPR)
[1] Zaman, M., Solanki, P., Ebrahimi, A., & White, L. (2010). “Neural Network Modeling of Resilient Modulus Using Routine Subgrade Soil Properties”, International Journal of Geomechanics, 10(1), 1-12.
[2] AASHTO. (1993). AASHTO Guide for Design of Pavement Structures 1993. American Association of State Highway and Transportation Officials, 1, Washington, D.C.
[3] Natinal Cooperative Highway Research Program. (2004). Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures. ARA, Inc., ERES Division.
[4] Gudishala, R. (2004). “Development of resilient modulus prediction models for base and subgrade pavement layers from in situ devices test results”, Louisiana State University Master's Theses. 3929.
[5] Hicks, R., & Monismith, C. (1971). “Factors influencing the resilient response of granular materials”, Highway Research Record, 345, 15-31.
[6] Kim, W., Labuz, J. (2007). Resilient Modulus and Strength of Base Course with Recycled Bituminous Material. Minnesota Department of Transportation, Research Services Section. Retrieved from the University of Minnesota Digital Conservancy, https://hdl.handle.net/11299/5567.
[7] Kim, S.H., Yang, J., & Jeong, J. (2014). “Prediction of subgrade resilient modulus using artificial neural network”, KSCE Journal of Civil Engineering, 18(5), 1372-1379.
[8] NCHRP. (2004). National Cooperative Highway Research Program. Guide for Mechanisticempirical Design of New and Rehabilitated Pavement Structures. Part 2, Design Inputs. Final Rep. No. NCHRP 1-37A, Washington, D.C.
[9] Drumm, E. C., Boateng-Poku, Y., & Johnson Pierce, T. (1990). “Estimation of subgrade resilient modulus from standard tests”, Journal of Geotechnical Engineering, 116(5), 774-789.
[10] Kim, D. G. (1999). Engineering properties affecting the resilient modulus of fine-grained soils as subgrade. Doctoral dissertation, The Ohio State University.
[11] George, K. P. (2004). Prediction of resilient modulus from soil index properties (No. FHWA/MS-DOT-RD-04-172). University of Mississippi.
[12] Andrei, D., Witczak, M. W., Schwartz, C. W., & Uzan, J. (2004). “Harmonized resilient modulus test method for unbound pavement materials”, Transportation Research Record, 1874(1), 29-37.
[13] Kim, D., & Kim, J. R. (2007). “Resilient behavior of compacted subgrade soils under the repeated triaxial test”, Construction and Building Materials, 21(7), 1470-1479.
[14] Mazari, M., Navarro, E., Abdallah, I., & Nazarian, S. (2014). “Comparison of numerical and experimental responses of pavement systems using various resilient modulus models”, Soils and Foundations, 54(1), 36-44.
[15] Park, H. I., Kweon, G. C., & Lee, S. R. (2009). “Prediction of resilient modulus of granular subgrade soils and subbase materials using artificial neural network”, Road Materials and Pavement Design, 10(3), 647-665.
[16] Heidarabadizadeh, N., Ghanizadeh, A. R., & Behnood, A. (2021). “Prediction of the resilient modulus of non-cohesive subgrade soils and unbound subbase materials using a hybrid support vector machine method and colliding bodies optimization algorithm”, Construction and Building Materials, 275, 122140.
[17] Ghanizadeh, A. R., & Rahrovan, M. (2016). “Application of artifitial neural network to predict the resilient modulus of stabilized base subjected to wet dry cycles”, Comput. Mater. Civ. Eng, 1, 37-47.
[18] Ghanizadeh, A. R., Heidarabadizadeh, N., & Heravi, F. (2021). “Gaussian Process Regression (GPR) for Auto-Estimation of Resilient Modulus of Stabilized Base Materials”, Journal of Soft Computing in Civil Engineering, 5(1), 80-94.
[19] Heukelom, W., & Klomp, A. (1962). “Dynamic Testing as a Means of Controlling Pavements During and after Construction”, 203(1), 495-510.
[20] Duncan, J., & Buchignani, A. (1976). An Engineering Manual for Settlement Studies. University of California, Berkeley CA. University of California, Berkeley CA.
[21] Mohammad, L., Titi, H., & Herath, A. (1999). “Evaluation of resilient modulus of subgrade soil by cone penetration test”, Transportation Research Record, 1(1652), 236-245.
[22] Mohammad, L., Titi, H., & Herath, A. (2002). Effect of moisture content and dry unit weight on the resilient modulus of subgrade soils predicted by cone penetration test. Washington, DC: Publication FHWA-LA-00-355. U.S. Department of Transportation, FHWA.
[23] Dehler, W., & Labuz, J. (2007). Cone Penetration Testing In Pavement Design. Minnesota Department of Transportation. Minnesota Department of Transportation, Research Services Section. Retrieved from https://hdl.handle.net/11299/5590
[24] Mohammad, L., Herath, A., Abu-Farsakh, M., Gaspard, K., & Gudishala, R. (2007). “Prediction of Resilient Modulus of Cohesive Subgrade Soils from Dynamic Cone Penetrometer Test Parameters”, Journal of Materials in Civil Engineering, 19(11), 986-992.
[25] Sadrossadat, E., Ghorbani, B., Zohourian, B., Kaboutari, M., & Rahimzadeh Oskooei, P. (2020). “Predictive modelling of the MR of subgrade cohesive soils incorporating CPT-related parameters through a soft-computing approach”, Road Materials and Pavement Design, 21(3), 701-719.
[26] Liu, S., Zou, H., Cai, G., Bheemasetti, T. V., Puppala, A. J., & Lin, J. (2016). “Multivariate correlation among resilient modulus and cone penetration test parameters of cohesive subgrade soils”, Engineering Geology, 209, 128-142.
[27] Puppala, A. J., Acar, Y. B., & Tumay, M. T. (1995). “Cone Penetration in Very Weakly Cemented Sand”, Journal of Geotechnical Engineering, 121(8), 589-600.
[28] Lunne, T., Robertson, P., & Powell, J. J. (1997). Cone Penetration Testing in Geotechnical Practice. London: Blackie Academic and Professional, CRC Press.
[29] Mayne, P. W. (2007). Cone penetration testing: a synthesis of highway practice. Washington, D.C.: NCHRP Synthesis 368. Transportation Research Board, National Academies Press, Washington, D.C.
[30] Liu, S., Cai, G., Puppala, A. J., & Tu, Q. (2011). “Prediction of embankment settlements over marine clay using piezocone penetration tests”, Bulletin of Engineering Geology and the Environment, 70(3), 401-409.
[31] Cai, G., Liu, S., Puppala, A. J., & Tong, L. (2011). “Assessment of the coefficient of lateral earth pressure at rest (K o) from in situ seismic tests”, Geotechnical Testing Journal, 34(4), 310-320.
[32] Cai, G., Liu, S., & Puppala, A. J. (2012). “Reliability assessment of CPTU-based pile capacity predictions in soft clay deposits”, Engineering Geology, 141-142, 84-91.
[33] Cai, G., Puppala, A. J., & Liu, S. (2014). “Characterization on the correlation between shear wave velocity and piezocone tip resistance of Jiangsu clays”, Engineering Geology, 171, 96-103.
[34] Olsen, R. S. (1994). Normalization and prediction of geotechnical properties using the cone penetrometer test (CPT). University of California, Berkeley.
[35] Hassan, A. B. (1996). The effects of material parameters on Dynamic Cone Penetrometer results for fine-grained soils and granular materials. Oklahoma: Oklahoma State University Stillwater.
[36] George, K. P., & Uddin, W. (2000). Subgrade characterization for highway pavement design. Final Report. Jackson: Mississippi Department of Transportation.
[37] Herath, A., Mohammad, L. N., Gaspard, K., Gudishala, R., & Abu-Farsakh, M. Y. (2005). “The use of dynamic cone penetrometer to predict resilient modulus of subgrade soils”, In Advances in pavement engineering, 1-16
[38] Zou, H., Liu, S., Cai, G., Puppala, A. J., & Bheemasetti, T. V. (2017). “Multivariate correlation analysis of seismic piezocone penetration (SCPTU) parameters and design properties of Jiangsu quaternary cohesive soils”, Engineering Geology, 228, 11-38.
[39] Zhang, Y., Li, T., & Wang, Y. (2011). “Theoretical elastic solutions for foundations improved by geosynthetic-encased columns”, Geosynthetics International, 18(1), 12-20.
[40] Zhang, W. (2020). “MARS use in prediction of collapse potential for compacted soils”, In MARS applications in geotechnical engineering systems, Springer, Singapore, 27-46.
[41] Ghorbani, B., Arulrajah, A., Narsilio, G., Horpibulsuk, S., & Bo, M. W. (2020). “Hybrid Formulation of Resilient Modulus for Cohesive Subgrade Soils Utilizing CPT Test Parameters”, Journal of Materials in Civil Engineering, 32(9), 06020011.
[42] Giustolisi, O., & Savic, D. A. (2006). “A symbolic data-driven technique based on evolutionary polynomial regression”, Journal of Hydroinformatics, 8(3), 207-222.
[43] Giustolisi, O., & Savic, D. (2009). “Advances in data-driven analyses and modelling using EPR-MOGA”, Journal of Hydroinformatics, 11(3-4), 225-236.
[44] Liu, S., Zou, H., Cai, G., Bheemasetti, T. V., Puppala, A. J., & Lin, J. (2016). “Multivariate correlation among resilient modulus and cone penetration test parameters of cohesive subgrade soils”, Engineering Geology, 209, 128-142.
[45] ASTM D5778. (2012). International Standard Test Method for Electronic Friction Cone and Piezocone Penetration Testing of Soils. Annual Book of ASTM Standards. ASTM International, West Conshohocken, PA.
[46] ISSMFE, I. (1989). Report of the ISSMFE Technical Committee on Penetration Testing of Soils -TC 16 with Reference Test Procedures. International Society for Soil Mechanics and Foundation Engineering.
[47] Ghani, A., Shahin, M., & Nikraz, H. (2012). “Use of Evolutionary Polynomial Regression (EPR) for Prediction of Total Sediment Load of Malaysian Rivers”, International Journal of Engineering, 6(5), 262-277.
[48] AASHTO T307. (2003). Determining the Resilient Modulus of Soils and Aggregate Materials. American Association of State Highway and Transportation Officials, Washington, DC. Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Washington, D.C.
CAPTCHA Image