مقایسه رفتار آرماتورهای FRP با فولادی در ستون‌های بتن مسلح تحت بارگذاری انفجار

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی عمران، واحد شهرکرد، دانشگاه آزاد اسلامی، شهرکرد، ایران

چکیده

در این مقاله، هدف تحلیل دینامیکی ستون‌های مربعی با استفاده از انواع میلگردهای پلیمری FRP (CFRP-AFRP-GFRP) و مقایسه آن‌ها با میلگرد فولادی تحت بار انفجار است. برای این منظور، ابتدا جهت ارزیابی اثر آرماتور‌های پلیمری، ستون با بعد ۲۵ سانتی‌متر و آرماتور‌های ۱۲ میلی‌متر، تحت سه نوع بارگذاری انفجار در قسمت‌های نزدیک پایه، میان و کل ستون قرار می‌گیرد. سپس جهت ارزیابی اثر سایز آرماتور، آرماتور با سایز ۱۸ میلی‌متر جایگزین آرماتورهای ۱۲ میلی‌متری شده و اثر بار انفجار بر کل ستون مورد ارزیابی قرار می‌گیرد. در گام بعد، جهت ارزیابی تأثیرگذاری ابعاد ستون، بارگذاری انفجار در کل ستون با بعد ۳۵ مورد بررسی قرار خواهد گرفت. نهایتاً ۲۰ مدل آماده ‌شده و توسط روش اجزای محدود مورد بررسی قرار گرفته و نتایج مربوط به جابه‌جایی، تنش و انرژی مستهلک‌شده محاسبه می‌گردد. نتایج نشان داده است که آرماتورهای FRP مقاومت بیشتری نسبت به آرماتور‌های فولادی در برابر بارگذاری انفجار دارند و آرماتور پلیمری CFRP نسبت به مابقی آرماتورهای موجود، عملکرد بهتری از خود نشان داده است. به‌طور کلی، می‌توان گفت استفاده از آرماتورهای پلیمری می‌تواند اقدامی در جهت مقاوم‌سازی سازه‌ها در برابر انفجار باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of the Behavior of FRP Rebar with Steel Rebar in Reinforced Concrete Columns under Impact Loading

نویسندگان [English]

  • Reza Heydari mal-amiri
  • Davoud Tavakoli
Department of Civil Engineering, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
چکیده [English]

The aim of this paper is to dynamic analyses of rectangular columns using different types of Fibre-reinforced plastic (FRP) rebars (CFRP-AFRP-GFRP) and compare them with steel rebars under impact loading. For this purpose, first, to evaluate the effect of FRP, the 25 cm column with 12mm rebars are placed under three types of impact loads in near the base, middle and the whole column. Then, to evaluate the reinforcement size effect, 12 mm rebars is replaced with 18 mm and the effect of the impact load on the whole column is evaluated. In the next step to evaluate the effect of cross sectional dimensions, the impact load across the column with the rectangular cross sectional with 35 cm dimensions will be examined. Finally, 20 models are prepared and examined by the finite element method and the results related to displacement, stress and energy are calculated. The results show that FRP reinforcements are more resistant to impact load than steel reinforcements and CFRP polymer reinforcement has performed better than other existing reinforcements. In general, it can be said that the use of Fibre-reinforced plastic reinforcement can be a measure to strengthen structures against impact load.

کلیدواژه‌ها [English]

  • Concrete column
  • Impact load
  • Rebar
  • CFRP
  • AFRP
  • GFRP
[1] DoD, U. S. (2008). “Structures to resist the effects of accidental explosions”, Unified Facilities Criteria, United States of America, Department of Defense, Washington, DC, Document No. UFC, 3-340.
[2] FEMA426. (2003). Reference Manual to Mitigate Potential Terrorist Attacks against Building, Federal Emergency Management Agency, 4, 1-20.
[3] FEMA427. (2003). Primer for Design of Commercial Buildings to Mitigate Terrorist Attacks, Federal Emer-gency Management Agency, 4, 1-10.
[4] Bangash, M. Y. H., & Bangash, T. (2006). “Blast and Explosive Loadings on Buildings”, Explosion-Resistant Buildings: Design, Analysis, and Case Studies, 67-101.
[5] Newmark, N. M., & Hansen, R. J. (1961). Design of blast resistant structures. Shock and vibration hand-book, 3, 1-19.
[6] Lam, N., Mendis, P., & Ngo, T. (2004). “Response spectrum solutions for blast loading”, Electronic Journal of Structural Engineering, 4(4), 28-44.
[7] Izadifard, R. A., & Maheri, M. R. (2010). “Application of displacement-based design method to assess the level of structural damage due to blast loads”, Journal of mechanical science and technology, 24(3), 649-655.
[8] Accidental Explosions. (1990). “The Design of Structures to Resist the Effects of US Department of the Ar-my, Navy, and Air Force”, Washington DC, 5-1300.
[9] Amran, Y. M., Alyousef, R., Rashid, R. S., Alabduljabbar, H., & Hung, C. C. (2018). “Properties and applica-tions of FRP in strengthening RC structures: A review”, In Structures, Elsevier, 16, 208-238.
[10] ACI Committee 440. (2003). Guide for the Design and Construction of Concrete Reinforced with FRP Bars, ACI440.1R-03, American Concrete Institute, USA, 41.
[11] Canadian Standards Association. (2002). Design and Construction of Building Components with Fiber Reinforced Polymers.CSA, Rexdale Ontario, S806-02.
[12] Japanese Society of Civil Engineers. JSCE. (1997). Recommendation for Design and Construction of Con-crete Structures Using Continuous Fiber Reinforcing Materials, Concrete Engineering Series, 23.
[13] Escórcio, P., & França, P. M. (2016). “Experimental study of a rehabilitation solution that uses GFRP bars to replace the steel bars of reinforced concrete beams”, Engineering Structures, 128, 166-183.
[14] Hasan, H. A., Sheikh, M. N., & Hadi, M. N. (2017). “Performance evaluation of high strength concrete and steel fibre high strength concrete columns reinforced with GFRP bars and helices”, Construction and Building Materials, 134, 297-310.
[15] Shi, Y., & Stewart, M. G. (2015). “Spatial reliability analysis of explosive blast load damage to reinforced concrete columns”, Structural safety, 53, 13-25.
[16] Shi, Y., Hao, H., & Li, Z. X. (2008). “Numerical derivation of pressure–impulse diagrams for prediction of RC column damage to blast loads”, International Journal of Impact Engineering, 35(11), 1213-1227.
[17] Crawford, J. E., Malvar, L. J., Wesevich, J. W., Valancius, J., & Reynolds, A. D. (1997). “Retrofit of rein-forced concrete structures to resist blast effects”, Structural Journal, 94(4), 371-377.
[18] Abdul-Salam, B., Farghaly, A. S., & Benmokrane, B. (2016). “Mechanisms of shear resistance of one-way concrete slabs reinforced with FRP bars”, Construction and Building Materials, 127, 959-970.
[19] Zhou, Y., Liu, S., Feng, J., & Fan, H. (2019). “Improved finite difference analysis of dynamic responses of concrete members reinforced with FRP bars under explosion”, Composite Structures, 230, 111518.
[20] Jahami, A., Temsah, Y., & Khatib, J. (2019). “The efficiency of using CFRP as a strengthening technique for reinforced concrete beams subjected to blast loading”, International Journal of Advanced Structural Engi-neering, 11(4), 411-420.
[21] Codina, R., Ambrosini, D., & de Borbón, F. (2016). “Alternatives to prevent the failure of RC members under close-in blast loadings”, Engineering Failure Analysis, 60, 96-106.
[22] Thai, D. K., & Kim, S. E. (2018). “Numerical investigation of the damage of RC members subjected to blast loading”, Engineering Failure Analysis, 92, 350-367.
[23] Bangash, M. Y. H., & Bangash, T. (2006). “Blast and Explosive Loadings on Buildings”, Explosion-Resistant Buildings: Design, Analysis, and Case Studies, 67-101.
CAPTCHA Image