بررسی اثر موقعیت ترک و مشخصات مقاومتی مصالح بر پایداری شیب‌های خاکی همگن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده فنی و مهندسی، دانشگاه آیت الله العظمی بروجردی (ره)

2 دانشجوی کارشناسی ارشد، دانشکده فنی و مهندسی، دانشگاه آیت الله الظمی بروجردی

3 دانشگاه آیت الله العظمی بروجردی، ایران

4 دانشجوی دکتری ژئوتکنیک دانشگاه رازی

چکیده

پیچیدگی شرایط و رفتار مصالح خاکی، وجود فرضیات متعدد در فرمول‌بندی تحلیل پایداری، مکانیسم لغزش، شکست شیب‌ها و ایجاد ترک در قسمت‌های مختلف شیب از جمله عوامل اصلیِ اثرگذار در پایداری شیب‌های خاکی است. در واقع، ترک‌ها یک رخداد شایع در شیب‌های خاکی بوده که نیازمند روشی هستند که شامل حضور ترک در ارزیابی پایداری براساس رویکرد سینماتیکی اجزای محدود و تفاضل محدود باشد. در حالی که بسیاری از ترک‌ها ممکن است در یک شیب وجود داشته باشند، به‌طور معمول مکانیسم شکست درگیر ترکی است که موقعیت آن دارای بیشترین اثر منفی بر پایداری است. در پژوهش حاضر، هندسه سطوح شکست بحرانی، از جمله نامطلوب‌ترین ترک‌ها، برای دامنه‌هایی با محدودیت‌های عرضی و شیبی مختلف مورد تجزیه و تحلیل قرار گرفته است. براساس یافته‌های حاصل از مدل‌سازی‌های عددی می‌توان نتیجه‌گیری کرد ضریب اطمینان در برابر پایداری به دلیل وجود ترک کاهش می‌یابد. نتایج نشان داد که براساس روش تفاضل محدود، بحرانی‌ترین موقعیت ترک برای شیب‌های خاکی همگن در محل پنجه شیب خواهد بود، زیرا در این محدوده، تشکیل ترک باعث ایجاد کمترین ضریب اطمینان می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of the Effect of Crack Position and Strength Characteristics of Materials on the Stability of Homogeneous Soil Slopes

نویسندگان [English]

  • Ahmadreza Mazaheri 1
  • Babak Tahmasebi 2
  • Mehdi Komasi 3
  • Masoud Nasiri 4
1 Department of Engineering Faculty, Ayatollah Borujerdi University
2 Master of Science Student,Ayatollah Borujerdi University
3 َUniversity of Ayatollah Boroujerdi, Iran
4 Ph.D Student, Razi University.
چکیده [English]

The complexity of the conditions and behavior of soil materials, the existence of various hypotheses in the formulation of stability analysis, and the mechanism of slip and failure of slopes are among the main factors influencing the methods of soil slope stabilization. The cracks are a common occurrence on earth slopes that require a method that includes the presence of cracks in the stability assessment based on the kinematic approach of finite element and finite-difference. While many cracks may be present on a slope, the failure mechanism typically involves a crack whose position has the greatest negative effect on stability. In the present study, the geometry of critical failure surfaces, including the most undesirable cracks for slopes with different transverse and slope constraints, has been analyzed. Based on the findings of numerical modeling, it can be concluded that the critical height of the slope decreases due to the presence of cracks. This decrease, however, decreases with the angle of slope inclination. The results showed that according to the finite difference method, the most critical crack position for homogeneous soil slopes will be at the slope toe because, in this range, crack formation creates the lowest factor of safety.

کلیدواژه‌ها [English]

  • Stability Analysis
  • Earth Slope
  • crack
  • Finite difference
[1] Hajiazizi, M., Mazaheri, A., & Orense, R. P. (2018). “Analytical approach to evaluate stability of pile-stabilized slope”, Scientia Iranica, 25(5), 2525-2536.
[2] Li, Y. X., & Yang, X. L. (2016). “Stability analysis of crack slope considering nonlinearity and water pres-sure”, KSCE Journal of Civil Engineering, 20(6), 2289-2296.
[3] Zhang, G., Wang, R., Qian, J., Zhang, J., & Qian, J. (2012). “Effect study of cracks on behavior of soil slope under rainfall conditions”, Soils and Foundations, 52(4), 634-643.
[4] Egeli, I., & Firat Pulat, H. (2011). “Mechanism and modelling of shallow soil stability during high intensity and short duration rainfall.” Scientia Iranica, 18(6), 1179-1187.
[5] Sun, D., Li, X., Feng, P. & Zang, Y. (2016). “Stability analysis of unsaturated soil slope during rainfall infiltra-tion using coupled liquid-gas-solid three phase model”, Water science and Engineering, 9(3), 183-194.
[6] Gao, Y., Song, W., Zhang, F., & Qin, H. (2015). “Limit analysis of slopes with cracks: Comparisons of re-sults”, Engineering Geology, 188(7), 97-100.
[7] Zhao, L., Cheng, X., Zhang, Y., Li, L., & Li, D. (2016). “Stability analysis of seismic slopes with cracks”, Computers and Geotechnics, 77, 77-90.
[8] Mukhlisin, M., & Khiyon, K. N. (2018). “The effects of cracking on slope stability”, Journal of the Geologi-cal Society of India, 91(6), 704-710.
[9] Li, Y. X., & Yang, X. L. (2016). “Stability analysis of crack slope considering nonlinearity and water pres-sure”, KSCE Journal of Civil Engineering, 20(6), 2289-2296.
[10] Li, B., Zhang, F., & Wang, D. (2018). “Impact of crack on stability of slope with linearly increasing un-drained strength”, Mathematical Problems in Engineering, 2018.
[11] Utili, S. (2013). “Investigation by limit analysis on the stability of slopes with cracks”, Geotechnique, 63(2), 140-154.
[12] Michalowski, R. L. (2012). “Cracks in slopes: limit analysis approach to stability assessment”, In GeoCon-gress 2012: State of the Art and Practice in Geotechnical Engineering, 442-450.
[13] Kakuturu, S., & Reddi, L. N. (2006). “Evaluation of the parameters influencing self-healing in earth dams”, Journal of Geotechnical and Geoenvironmental Engineering, 132(7), 879-889.
[14] Hajiazizi, M., Nasiri, M., & Mazaheri, A. R. (2018). “The effect of fixed-tip piles on stabilization of earth slopes”, Scientia Iranica, 25(5), 2550-2560.
[15] Löfroth, H., O'Regan, M., Snowball, I., Holmén, M., Kopf, A., Göransson, G., ... & Frogner-Kockum, P. (2021). “Challenges in slope stability assessment of contaminated fibrous sediments along the northern Baltic coast of Sweden”, Engineering Geology, 289, 106190.
[16] Sengani, F., Muavhi, N., & Mulenga, F. (2021). “Advanced analysis of road-slope stability in a brittle and faulted rockmass terrain by several techniques”, Transportation Geotechnics, 28, 100545.
[17] Cai, J. S., Yeh, T. C. J., Yan, E. C., Tang, R. X., & Hao, Y. H. (2021). “Design of borehole deployments for slope stability analysis based on a probabilistic approach”, Computers and Geotechnics, 133, 103909.
[18] Spencer, E. (1967). “A method of analysis of the stability of embankments assuming parallel inter-slice forces”, Géotechnique, 17(1), 11-26.
[19] Spencer, E. (1968). “Effect of tension on stability of embankments”, Journal of the Soil Mechanics and Foundations Division, ASCE, 94(5), 1159-1173.
[20] Robertson, A. M. (1971). “Accounting for Cracks in Slope Stability Analysis”, nature, 1, 4.
[21] Cousins, B.F. (1980). “Stability charts for simple earth slopes allowing for tension cracks”, In Proceedings of the Third Australia–New Zealand Conference on Geomechanics, Wellington, 2, 101-105
[22] Baker, R., & Leshchinsky, D. (2003). “Spatial distribution of safety factors: cohesive vertical cut”, Interna-tional Journal of Numerical and Analytical Methods in Geomechnics, 27, 1057-1078.
[23] Chowdhury, R. N., & Zhang, S. (1991, December). “Tension cracks and slope failure”, In Proc. Interna-tional Conference, 27-32.
CAPTCHA Image