پیشنهاد مدل های رگرسیونی جهت تخمین مقاومت فشاری تک محوری و مدول الاستیسیته ماسه سنگ ها براساس خصوصیات فیزیکی و سرعت موج تراکمی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه صنعتی بیرجند، بیرجند، ایران.

2 گروه مهندسی صنایع، دانشگاه صنعتی بیرجند، بیرجند، ایران.

10.22091/cer.2021.6923.1247

چکیده

پی بسیاری از سازه‌های مهندسی بر روی ماسه سنگ‌ها بنا شده است. هدف اصلی این مقاله تخمین مقاومت تراکم تک محوری (UCS) و مدول الاستیسیته (Es) ماسه سنگ‌ها با استفاده از مدل‌های رگرسیونی می‌باشد. بدین منظور، مطالعات پتروگرافی، آزمون‌های سرعت موج تراکمی، تخلخل، چگالی و مقاومت فشاری تک محوری بر روی نمونه‌های خشک و اشباع ماسه سنگ‌های تهیه شده از روستای مشا در شمال غرب شهر دماوند انجام شد. ماسه سنگ‌های مورد مطالعه از نوع فلدسپاتیک لیت‌آرنایت و لیت‌آرنایت می‌باشند. به دلیل تأثیر رطوبت بر خواص فیزیکی و مکانیکی این ماسه سنگ‌ها، چگالی و سرعت موج تراکمی نمونه‌ها در حالت اشباع نسبت به حالت خشک به ترتیب 4 و 20 درصد افزایش یافته است. برعکس، UCS و Es به ترتیب 18 و 25 درصد کاهش یافته است. نتایج رگرسیون ساده نشان داد که دقیق‌ترین (بیشترین ضریب همبستگی و کمترین خطا) رابطه تخلخل، سرعت موج تراکمی و چگالی با UCS و Es به ترتیب لگاریتمی، خطی و چند جمله‌ای درجه دو می‌باشد. براساس مقادیر ضریب تعیین و میزان خطا، روابط ارائه شده به روش رگرسیون ساده جهت تخمین UCS و Es از دقت بالایی برخوردار می‌باشند. همچنین سرعت موج تراکمی و تخلخل بیشترین تأثیر را بر UCS و Es دارند. ارزیابی روابط تجربی سایر محققان نشان داد که برخی از این روابط دارای ضریب تعیین بیشتر از 50 درصد می‌باشند. بررسی نمودارهای همگنی واریانس باقی مانده‌ها در سطوح مقادیر پیش بینی شده، ضریب تعیین و خطای روش‌ها نشان داد که رگرسیون چندمتغیره نسبت به رگرسیون ساده از دقت بالایی جهت تخمین UCSو Esماسه سنگ‌ها برخوردار است.

کلیدواژه‌ها


عنوان مقاله [English]

Proposing Regression Models to Estimate Uniaxial Compressive Strength and Elastic Modulus of the Sandstones Based on Physical Properties and Compressional Wave Velocity

نویسندگان [English]

  • Amir Azadmehr 1
  • Mohsen Saffarian 2
  • Sayed Mahmood Kazemi 2
1 Department of Mining Engineering, Birjand University of Technology, Birjand, Iran.
2 Department of Industrial Engineering, Birjand University of Technology, Birjand, Iran.
چکیده [English]

Many engineering structures have been built on the sandstones. The main purpose of this study is to estimate the uniaxial compressive strength (UCS) and modulus of elasticity (Es) of sandstones using regression models. For this purpose, petrographic studies, compressional wave velocity (Vp), porosity, density and uniaxial compressive strength tests were performed on dry and saturated samples of sandstones prepared from Mosha village in the northwest of Damavand city. The studied sandstones were classified as feldspathic litharenite and litharenite. Due to the effect of moisture on the physical and mechanical properties of these sandstones, the density and Vp of the samples in the saturated state compared to the dry state have increased by 4 and 20%, respectively. In contrast, UCS and Es have increased by 18% and 25%, respectively. The results of simple regression showed that the most accurate relationship (the highest correlation coefficient and the lowest error) of porosity, Vp and density with UCS and Es are logarithmic, linear and quadratic polynomials, respectively. Based on the determination coefficient (R2=0.5-0.77) and the errors (RMSE=10.29-18.26; MAPE=1.70-2.80), the relationships presented by simple regression method for estimating UCS and Es showed high accuracy. The Vp and porosity also have the greatest impact on UCS and Es. Evaluation of empirical relationships of other researchers showed that some of these relationships have a determination coefficient of more than 50%. Examination of residual variance homogeneity graphs at the predicted value levels, determination coefficient and error of the methods showed that multivariate regression (R2=0.73-0.74, RMSE=13.36-13.56, MAPE=1.06-1.22, Durbin-Watson= 1.56-1.70) has a high accuracy for estimating UCS and Es as compared to the simple regression.

کلیدواژه‌ها [English]

  • Sandstone
  • Moisture effect
  • Simple and multivariate regression
  • Geotechnical properties
[1] Aladejare, A. E. (2020). “Evaluation of empirical estimation of uniaxial compressive strength of rock using measurements from index and physical tests”, Journal of Rock Mechanics and Geotechnical Engineering, 12(2), 256-268.
[2] Azimian, A. (2017). “Application of statistical methods for predicting uniaxial compressive strength of lime-stone rocks using nondestructive tests”, Acta Geotechnica, 12(2), 321-333.
[3] Ghobadi, M. H., Amiri, M., & Aliani, F. (2020), “Investigation of engineering geology characteristics of peri-dotites (Case Study: Harsin County, Kermanshah Province)”, Journal of Engineering Geology, 14(1), 105-132.
[4] Ghafoori, M., Rastegarnia, A., & Lashkaripour, G. R. (2018). “Estimation of static parameters based on dy-namical and physical properties in limestone rocks”, Journal of African Earth Sciences, 137, 22-31.
[5] Jamshidi, A., Nikudel, M., Khamehchiyan, M., Zarei Sahamieh, R., & Abdi, Y. (2016). “A correlation be-tween P-wave velocity and Schmidt hardness with mechanical properties of travertine building stones”, Arabian Journal of Geosciences, 9, 568-580
[6] Selçuk, L., & Nar, A. (2016). “Prediction of uniaxial compressive strength of intact rocks using ultrasonic pulse velocity and rebound-hammer number”, Quarterly Journal of Engineering Geology and Hydrogeology, 49(1), 67-75.
[7] Barham, W. S., Rabab’ah, S. R., Aldeeky, H. H., & Al Hattamleh, O. H. (2020). “Mechanical and physical based artificial neural network models for the prediction of the unconfined compressive strength of rock”, Ge-otechnical and Geological Engineering, 38(5), 4779-4792.
[8] Abdi, Y. (2020). “Application of multivariate regression analysis to predict uniaxial compressive strength and modulus of elasticity of sandstones using petrographic properties”, New findings of applied geology, 14(27), 147-157.
[9] Ebrahimi Fard, H., & Jabbari, M. M. (2017). “The Effect of Magnesium Oxide Nano Particles on the Me-chanical and Practical Properties of Self-Compacting Concrete”, Journal of civil Engineering and Materials Application, 1(2), 77-87.
[10] Mishra, D. A. & Basu, A. (2013). “Estimation of uniaxial compressive strength of rock materials by index tests using regression analysis and fuzzy inference system”, Engineering Geology, 160(1), 54-68.
[11] Armaghani, D. J., Amin, M. F. M., Yagiz, S., Faradonbeh, R. S., & Abdullah, R. A. (2016). “Prediction of the uniaxial compressive strength of sandstone using various modeling techniques”, International Journal of Rock Mechanics and Mining Sciences, 85, 174-186.
[12] Abdi, Y., & Khanlari, G. H. (2019). “Estimation of mechanical properties of sandstones using wave veloci-ty and Schmidt hammer experiments”, Journal of New Applied Geological Findings, 24(13), 33-47.
[13] Bejarbaneh, B. Y., Bejarbaneh, E. Y., Fahimifar, A., Armaghani, D. J., & Abd Majid, M. Z. (2018). “Intelli-gent modelling of sandstone deformation behavior using fuzzy logic and neural network systems”, Bulletin of Engineering Geology and the Environment, 77(1), 345-361.
[14] Moradian, Z. A., & Behnia, M. (2009). “Predicting the uniaxial compressive strength and static Young’s modulus of intact sedimentary rocks using the ultrasonic test”, International Journal of Geomechanics, 9(1), 14–19.
[15] Kılıç, A. & Teymen, A. (2008). “Determination of mechanical properties of rocks using simple methods”, Bulletin of Engineering Geology and the Environment, 67(2), 237-244.
[16] Erguler, Z. A., & Ulusay, R. (2009). “Water-induced variations in mechanical properties of clay-bearing rocks”, International Journal of Rock Mechanics and Mining Sciences, 46(2), 355-370.
[17] Vásárhelyi, B. (2005). “Statistical analysis of the influence of water content on the strength of the Miocene limestone”, Rock Mechanics and Rock Engineering, 38(1), 69-76.
[18] Török, Á. & Vásárhelyi, B. (2010). “The influence of fabric and water content on selected rock mechanical parameters of travertine, examples from Hungary”, Engineering Geology, 115(3), 237-245.
[19] Vásárhelyi, B. (2003). “Some observations regarding the strength and deformability of sandstones in dry and saturated conditions”, Bulletin of Engineering Geology and the Environment, 62(3), 245-249.
[20] Azimian, A., & Ajalloeian, R. (2015). “Empirical correlation of physical and mechanical properties of marly rocks with P wave velocity”, Arabian Journal of Geosciences, 8(4), 2069-2079.
[21] Yasar, E., & Erdogan, Y. (2004). “Correlating sound velocity with the density, compressive strength and Young's modulus of carbonate rocks”, International Journal of Rock Mechanics and Mining Sciences, 41(5), 871-875.
[22] Khandelwal, M. (2013). “Correlating P-wave velocity with the physic-mechanical properties of different rocks”, Pure Applied Geophysics, 170, 507-514.
[23] Altindag, R. (2012). “Correlation between P-wave velocity and some mechanical properties for sedimen-tary rocks”, Journal of the Southern African Institute of Mining and Metallurgy, 112, 229-237.
[24] Edet, A. (2018). “Correlation between Physico-mechanical Parameters and Geotechnical Evaluations of Some Sandstones along the Calabar/Odukpani–Ikom–Ogoja Highway Transect, Southeastern Nigeria”, Ge-otechnical and Geological Engineering, 36(1), 135-149.
[25] Heidari, M., Rafiei, B., Nouri, M., Khanlari, G. R., & Momeni, A. A. (2015). “Estimation of uniaxial com-pressive strength and modulus of elasticity of conglomerate specimens using regression and artificial neural network”, geotechnical geology (applied geology), 10(1), 35-46.
[26] Kurtulus, C., Bozkurt, A., & Endes, H. (2012). “Physical and Mechanical Properties of Serpentinized Ultra-basic Rocks in NW Turkey”, Pure and Applied Geophysics, 169, 1205-1215.
[27] Shakoor, A., & Barefield, E. H. (2009). “Relationship between unconfined compressive strength and degree of saturation for selected sandstones”, Environmental & Engineering Geoscience, 15(1), 29-40.
[28] Abdi, Y., Khanlari, G. R. & Jamshidi, A. (2018). “Correlation between mechanical properties of sandstones and P-wave velocity in different degrees of saturation”, Geotechnical and Geological Engineering, 1-10, https://doi.org/10.1007/s10706-018-0721-6.
[29] Vasanelli, E., Colangiuli, D., Calia, A., Sileo, M. & Aiello, M. A. (2015). “Ultrasonic pulse velocity for the evaluation of physical and mechanical properties of a highly porous building limestone”, Ultrasonics, 60: 33-40.
[30] Karakul, H., & Ulusay, R. (2013). “Empirical correlations for predicting strength properties of rocks from P-wave velocity under different degrees of saturation”, Rock mechanics and rock engineering, 46(5): 981-999.
[31] Karakul, H. (2016). “Investigation of saturation effect on the relationship between compressive strength and Schmidt hammer rebound”, Bulletin of Engineering Geology and the Environment, 76(3), 1143-52.
[32] Ansari, Y., & Hashemi, A. (2017). “Neural Network Approach in Assessment of Fiber Concrete Impact Strength”, Journal of civil Engineering and Materials Application, 1(3), 88-97.
[33] Sekhavati, P., & Jafarkazemi, M. (2019). “Investigating durability behavior and compressive strength of lightweight concrete containing the nano silica and nano lime additives in the acid environment”, Journal of civil Engineering and Materials Application, 3(2), 103-117.
[34] Esparham, A., Moradikhou, A. B., & Avanaki, M. J. (2020). “Effect of Various Alkaline Activator Solu-tions on Compressive Strength of Fly Ash-Based Geopolymer Concrete”, Journal of civil Engineering and Ma-terials Application, 4(2), 115-123.
[35] Shirmohammadi, H., & Hoseiny Khanshan, H. (2018). “Effect of Mineral pitch and Zycosil Nano-Material on Mechanical Properties and Moisture Susceptibility of Asphalt Mixtures”, Journal of civil Engineering and Materials Application, 2(2), 97-102.
[36] Taheri, S., & Ziad, H. (2021). “Analysis and Comparison of Moisture Sensitivity and Mechanical Strength of Asphalt Mixtures Containing Additives and Carbon Reinforcement”, Journal of Civil Engineering and Ma-terials Application, 5(1), 1- 8.
[37] Zhang, Z., Jiang, Q., Zhou, C., & Liu, X. (2014). “Strength and failure characteristics of Jurassic Red-Bed sandstone under cyclic wetting–drying conditions”, Geophysical Journal International, 198(2), 1034-1044.
[38] McSkimming, E. (2014). “Weathering Effects on the Engineering Properties of Sydney (Yellow Block) Sandstone when used as a Building Material”, International Journal of Architectural Heritage, 9, 497-509.
[39] Andriani, G. F. & Walsh, N. (2010). “Petrophysical and mechanical properties of soft and porous building rocks used in Apulian monuments (south Italy)”, Geological Society, London, Special Publications, 333(1), 129-141.
[40] Yasar, E., Ranjith, P. G., & Perera, M. S. A. (2010). “Physico-mechanical ehavior of southeastern Mel-bourne sedimentary rocks”, International Journal of Rock Mechanics and Mining Science, 47, 481-487.
[41] Hosseini, M., & Nalbandan, M. (2019). “The effect of wet-drying cycles on the physical, mechanical and rupture properties of sandstone”, Journal of Mineral Resources Engineering, 4(1), 79-95.
[42] Ghobadi, M. H. & Mousavi, S. (2014). “The effect of pH and salty solutions on durability of sandstones of the Aghajari Formation in Khouzestan province, southwest of Iran”, Arabian Journal of Geosciences, 7(2), 641-653.
[43] Ulusay, R., Tureli, K., & Ider, M. H. (1994). “Prediction of engineering properties of a selected litharenite sandstone from its petrographic characteristics using correlation and multivariable statistical techniques”, Engi-neering Geology, 37, 135–157.
[44] Bell, F. G. (1978). “The physical and mechanical properties of the Fell Sandstones, Northumberland, Eng-land”, Engineering Geology, 12, 11-29.
[45] Mikaeil, R., Jalili Kashtiban, Y., Shahriar, K., & Jafarpour, A. (2020). “Evaluation and Management of Geotechnical Risk in Tunneling Projects Using Fault Tree Analysis”, Civil Infrastructure Research, 6(1), 41-53.
[46] Chang, C., Zoback, M. D., & Khaksar, A. (2006). “Empirical relations between rock strength and physical properties in sedimentary rocks”, Journal of Petroleum Science and Engineering. 51(3), 223-237.
[47] Heidari, M., Momeni, A., Rafiei, B., Khodabakhsh, S., & Torabi-Kaveh, M. (2013). “Relationship between Petrographic Characteristics and the Engineering Properties of Jurassic Sandstones, Hamedan, Iran”, Rock Me-chanics and Rock Engineering, 46, 1091-1101.
[48] Wang, S., Hagan, P., Hu, B., Gamage, K., Yan, C. & Xu, D. (2014). “Rock-arch instability characteristics of the sandstone plate under different loading conditions”, Advances in Materials Science and Engineering, 2014.
[49] Weng, M. C. & Li, H. H. (2012). “Relationship between the deformation characteristics and microscopic properties of sandstone explored by the bonded-particle model”, International Journal of Rock Mechanics and Mining Sciences, 56, 34-43
[50] Naresh, K. T., Shuichiro, Y., & Suresh, D. (2007). “Relationships among mechanical, physical and petro-graphic properties of Siwalik sandstones, Central Nepal Sub-Himalayas”, Engineering Geology, 90, 105-123.
[51] Ghobadi, M. H., Rafiei, B., Mousavi, S., & Aria Far, N. (2013). “Study of geotechnical properties of sand-stones of Aghajari Formation in the east and southeast of Ahvaz”, Journal of Advanced Applied Geology, 1, 21-33.
[52] Heidari, M., Rafiei, B., & Taba, H. (2013). “Study of geotechnical characteristics of sandstones of Qom Formation located in Tajrak village (Famenin city)”, 8th Conference of Iranian Geological Society of Engi-neering and Environment, Ferdowsi University of Mashhad.
[53] Gokceoglu, C., & Zorlu, K. (2004). “A fuzzy model to predict the uniaxial compressive strength and the-modulus of elasticity of a problematic rock”, Engineering Applications of Artificial Intelligence, 17, 61-72.
[54] Ghobadi, M. H., & Aria Far, N. (2011). “Possibility of assessing the physical properties of sandstones in Aghajari Formation in Ahvaz using non-destructive P-wave velocity test”, 15th Conference of Iranian Geologi-cal Society, Tarbiat Moallem University, Tehran.
[55] Oshnavieh, D., & Bagherzadeh Khalkhali, A. (2019). “Use of shear wave velocity in evaluation of soil lay-er’s condition after liquefaction”, Journal of civil Engineering and Materials Application, 3, 113-130.
[56] Naseri, F., Lotfollahi, S., & Bagherzadeh Khalkhali, A. (2017). “Dynamic Mechanical Behavior of Rock Materials”, Journal of Civil Engineering and Materials Application, 1(2), 39-44.
[57] Lotfollahi, S., Ghorji, M., & Hoseini Toodashki, V. (2018). “An Investigation into the Effect of
Foliation Orientation on Displacement of Tunnels Excavated in Metamorphic Rocks”, Journal of Civil Engi-neering and Materials Application, 2(3), 138-145.
[58] ISRM. (1981). Rock characterization testing and monitoring. In: Brown, E.T. (Ed.), ISRM Suggested Methods. Pergamon Press, Oxford.
[59] ASTM. (1983). Test methods for ultra violet velocities determination. Designation D2845.
[60] Folk, R. L. (1974), Petrology of Sedimentary Rocks. Hemphill, Austin, 600p.
[61] Taylor, R. (1990). “Interpretation of the correlation coefficient: a basic review”, Journal of diagnostic
medical sonography, 6(1), 35-39.
CAPTCHA Image