پیش بینی رفتار سدهای بتنی با استفاده از شبکه های عصبی مصنوعی (مطالعه موردی رفتار سد دز)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

2 دانشکده مهندسی، دانشگاه قم، قم، ایران

3 کارشناس ارشد، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

10.22091/cer.2021.6898.1242

چکیده

سدهای بزرگ حجم قابل توجهی از آب را در پشت خود ذخیره می‌کنند. از این رو، ایمنی و کنترل پایداری آنها از جایگاهی وی‍ژه برخوردار است. تغییرات دما و فشار هیدرواستاتیک از مهمترین عواملی می‌باشند که بر روی سازه سد تأثیرگذار هستند؛ و باعث تغییرمکان‌هایی در تاج سد به سمت بالادست و پایین‌دست خواهند شد. بنابرین باید داده‌های به‌دست آمده از مرکز پایش مرتباً مورد ارزیابی قرار گیرد تا بتوان رفتار سد را تجزیه و تحلیل نمود. با توجه به این موضوع در این مطالعه با استفاده از شبکه‌های عصبی مصنوعی مدلی برای پیش بینی تغییرمکان افقی تاج سد دز که تحت اثر تغییرات فشار و درجه حرارت ایجاد می‌شود، ارائه شده است. با توجه به نتایج مشاهده می‌شود که شبکه عصبی دارای عملکرد خوبی در پیش‌بینی مقادیر واقعی می‌باشد. خطای متوسط شبکه مدل شده در حدود 4 درصد می‌باشد. این مساله نشان دهنده آن است که شبکه به خوبی آموزش دیده است. با استفاده از شبکه ایجاد شده، تغییرات تغییرمکان شعاعی در مقابل تراز آب مخزن برای درجه حرارت‌های مختلف به‌دست آمده، و به صورت نمودار ترسیم شده است. با استفاده از نمودارها به خوبی می‌توان رفتار سد دز را برای درجه حرارت‌های مختلف و تغییرات تراز آب مخزن، پیش بینی کرد که این امر در زمینه پایش و نگهداری از این سد می‌تواند بسیار مفید باشد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Predicting the Behavior of Concrete Dams Using Artificial Neural Networks (Case study of Dez Dam)

نویسندگان [English]

  • Hosein Naderpour 1
  • Seyed Rohollah Hoseini Vaez 2
  • Naser Malekshahi 3
1 Faculty of Civil Engineering, Semnan University, Semnan, Iran
2 Department of Civil Engineering, University of Qom, Qom, Iram
3 M.Sc. Faculty of Civil Engineering, Semnan University, Semnan, Iran
چکیده [English]

Large dams store a significant amount of water behind them. Therefore, their safety and stability control have a special place. Changes in temperature and hydrostatic pressure are the most important factors that affect the dam structure; And will cause shifts in the crown of the dam upstream and downstream. Therefore, the data obtained from the monitoring center should be evaluated regularly in order to analyze the behavior of the dam. Due to this issue, in this study, using artificial neural networks, a model is presented to predict the horizontal displacement of the Dez dam crown due to changes in pressure and temperature. According to the results, it is observed that the neural network has a good performance in predicting real values. The average error of the modeled network is about 4%. This indicates that the network is well trained. Using the generated network, the radial displacement changes against the reservoir water level for different temperatures are obtained, and plotted. Using diagrams, it is possible to predict the behavior of Dez dam for different temperatures and changes in reservoir water level, which can be very useful in monitoring and maintaining this dam.

کلیدواژه‌ها [English]

  • Concrete Dam
  • Artificial Neural Network
  • Dez Dam
  • Hydrostatic Pressure
  • Temperature Variation
[1] Léger, P., & Leclerc, M. (2007). “Hydrostatic, temperature, time-displacement model for concrete dams”, Journal of engineering mechanics, 133(3), 267-277.
[2] De Sortis, A., & Paoliani, P. (2007). “Statistical analysis and structural identification in concrete dam moni-toring”, Engineering structures, 29(1), 110-120.
[3] ICOLD. (2003). Methods of analysis for the prediction and the verification of dam behaviour. Tech. rep. Swiss Committee on Dams.
[4] Gomes, H. M., & Awruch, A. M. (2004). “Comparison of response surface and neural network with other methods for structural reliability analysis”, Structural safety, 26(1), 49-67.
[5] Wang, B. S., & He, Z. C. (2007). “Crack detection of arch dam using statistical neural network based on the reductions of natural frequencies”, Journal of Sound and Vibration, 302(4-5), 1037-1047.
[6] Bakhary, N., Hao, H., & Deeks, A. J. (2007). “Damage detection using artificial neural network with consid-eration of uncertainties”, Engineering Structures, 29(11), 2806-2815.
[7] Fedele, R., Maier, G., & Miller, B. (2006). “Health assessment of concrete dams by overall inverse analyses and neural networks”, International Journal of Fracture, 137(1-4), 151-172.
[8] Sohn, H., Czarnecki, J. A., & Farrar, C. R. (2000). “Structural health monitoring using statistical process con-trol”, Journal of structural engineering, 126(11), 1356-1363.
[9] Joghataie, A., & Dizaji, M. S. (2009). “Nonlinear analysis of concrete gravity dams by neural networks”, In Proceedings of the World Congress on Engineering, 2, 1022–7.
[10] Liu, J., Wang, G., & Chen, Y. (2008). “Research and application of GA neural network model on dam dis-placement forecasting”, In Earth & Space 2008: Engineering, Science, Construction, and Operations in Chal-lenging Environments, 1-9.
[11] Perner, F., Koehler, W., & Obernhuber, P. (2001). “Interpretation of Schlegeis dam crest displacements”, In Proceedings of the 6th International Benchmark Workshop on Numerical Analysis of Dams. Salzburg, Austria, 17-19.
[12] Wen, C. M., Hung, S. L., Huang, C. S., & Jan, J. C. (2007). “Unsupervised fuzzy neural networks for dam-age detection of structures”, Structural Control and Health Monitoring: The Official Journal of the Interna-tional Association for Structural Control and Monitoring and of the European Association for the Control of Structures, 14(1), 144-161.
[13] Yi, X. D., Xu, F., & Jiang, C. K. (2009). “Research on dam deformation forecast model based on genetic algorithm neural network”, 8th international symposium on test and measurement, 1–6, Hong Kong: Interna-tional Academic Publishers Ltd, 1536–9.
[14] Naderpour, H., Rafiean, A. H., & Fakharian, P. (2018). “Compressive strength prediction of environmental-ly friendly concrete using artificial neural networks”, Journal of Building Engineering, 16, 213-219.
[15] Alavi, S. A., Naderpour, H., & Fakharian, P. (2018). “An Approach for Estimating the Rotation Capacity of Wide Flange Beams using Bayesian Regularized Artificial Neural Networks (BRANN)”, Modares Civil Engi-neering journal, 18(4), 157-169.
[16] Kashkaki, Z., Banejad, H., & Heydari, M. (2018). “Application of ANN in Estimating Discharge Coeffi-cient of Circular Piano Key Spillways”, Journal of Soft Computing in Civil Engineering, 2(3), 39-49.
[17] Ahmadi, M., Naderpour, H., & Kheyroddin, A. (2014). “Utilization of artificial neural networks to predic-tion of the capacity of CCFT short columns subject to short term axial load”, Archives of civil and mechanical engineering, 14(3), 510-517.
[18] Demuth, H., Beale, M., & Hagan, M. (2009). Neural Network Toolbox 6 User’s Guide’The MathWorks. Inc, MA, US.
[19] Naderpour, H., Kheyroddin, A., & Amiri, G. G. (2010). “Prediction of FRP-confined compressive strength of concrete using artificial neural networks”, Composite Structures, 92(12), 2817-2829.
[20] Uysal, M., & Tanyildizi, H. (2011). “Predicting the core compressive strength of self-compacting concrete (SCC) mixtures with mineral additives using artificial neural network”, Construction and Building Materials, 25(11), 4105-4111.
CAPTCHA Image