بررسی ضریب دبی سرریزهای کنگره‌ای منقاری مثلثی با استفاده از نرم‌افزار FLUENT و الگوریتم‌های گرگ خاکستری و انتخابات

نوع مقاله : مقاله پژوهشی


1 گروه مهندسی آب دانشگاه تبریز

2 گروه مهندسی کامپیوتر، دانشکده فنی و مهندسی، دانشگاه بناب

3 گروه علوم و مهندسی آب، دانشگاه تبریز



سرریز‌های کنگره‌ای از جمله سازه‌های هیدرولیکی مهم جهت تنظیم سطح آب و کنترل جریان در کانال‌ها، رودخانه‌ها و مخازن سد‌ها محسوب می‌شوند. جهت استفاده بهینه از این نوع سرریزها، برآورد مقدار ضریب دبی ضروری است. در همین راستا، در این پژوهش با استفاده از مجموعه داده‌ای شامل 120 داده آزمایشگاهی جمع‌آوری شده توسط کومار و همکاران (2011) و عددی شبیه‌سازی شده توسط نرم‌افزار FLUENT با استفاده از مدل آشفتگی (k-ε RNG) به برآورد بهینه ضریب دبی سرریزهای کنگره‌ای منقاری مثلثی که در یک کانال مستطیلی به عرض 0.28 متر، طول 12 متر و ارتفاع 0.41 متر تعبیه شده، با استفاده از الگوریتم‌های فراابتکاری نوین گرگ خاکستری (GWO) و انتخابات (EA)، پرداخته شد. برای بررسی اثر ضریب دبی، زوایای 30، 60، 90، 120، 150 و 180 درجه با ارتفاع سرریز، 10 سانتی‌متر انتخاب و شرایط جریان در تمامی حالات به‌صورت زیربحرانی، آشفته و جریان ریزشی در نظر گرفته شد. تابع هدف مجموع مربعات اختلاف بین دبی محاسباتی و مشاهداتی است که به‌صورت کمینه تعریف شد. مقایسه نتایج الگوریتم‌های GWO و EA و نرم‌افزار FLUENT با کسب مقادیر R2=0.96 و NRMSE=0.052 در مقایسه با مقادیر مشاهداتی، نشان‌دهنده تطابق مناسب بین مقادیر مشاهداتی و محاسباتی می‌باشد. با توجه به نتایج حاصل از اجرای الگوریتمهای GWO و EA مقدار ضریب دبی جریان بهینه در بین سرریزهای کنگرهای منقاری مثلثی مورد بررسی در سرریز با زاویه رأس 60 درجه و به‌ترتیب برابر با مقادیر 0.44 و 0.5 به‌دست آمد.



عنوان مقاله [English]

Investigation of Discharge Coefficient of Triangular Duckbill Labyrinth Weirs Using Fluent Software and Gray Wolf and Elections Algorithms

نویسندگان [English]

  • Somayeh Emami 1
  • Javad Parsa 1
  • Hojjat Emami 2
  • Akram Abbaspour 3
1 Water Engineering Department of Tabriz
2 Assistant Professor of Computer Engineering, Faculty of Engineering, University of Bonab
3 Associate Professor, Department of Water Engineering, University of Tabriz
چکیده [English]

Labyrinth weirs are important hydraulic structures for water level regulation and flow control in canals, rivers, and reservoirs. Due to the uneven distribution of hydraulic head on the weir crest, the discharge coefficient changes along the labyrinth weirs are noticeable. For optimal use of this type of weir, it is necessary to estimate the discharge coefficient. In this regard, in this study, using a data set including 120 experimental data collected by Kumar et al. (2011) and numerical (simulated by FLUENT software using k-ε RNG turbulence model) to optimally estimate the discharge coefficient of triangular-duckbill labyrinth weir embedded in a rectangular channel 0.28 m wide, 12 m long and 0.41 m high was addressed using modern gray wolf meta-heuristic (GWO) and election (EA) algorithms. To investigate the effect of discharge coefficient, angles of 30, 60, 90, 120, 150 and 180 degrees with weir height of 10 cm were selected and the flow conditions in all cases were considered as subcritical, turbulent and falling flow. The objective function is the sum of the squares of the difference between the computational flow and the observations defined as the minimum. Comparison of the results of GWO and EA algorithms and FLUENT software with values of R2=0.96 and NRMSE=0.052 in comparison with the observed values, shows a good agreement between the observed and computational values.

کلیدواژه‌ها [English]

  • Flow Control
  • Optimization
  • Meta-Heuristic Algorithms
  • Turbulence Model
[1] Abrishami, J., & Hosseini, M. (2010). Hydraulics of open channels. Imam Reza University Publications.
[2] Emami, S. (2016). “Numerical study of the effect of geometric parameters of duckbill labyrinth weir on dis-charge coefficient”, MSc. Thesis, Faculty of Agriculture, University of Tabriz.
[3] Nikpeik, P., Kashefipour, S. M., & Multajei, A. (2012). “Investigation of the effect of geometric dimensions of duckbill weir on discharge coefficient”, National Conference on Structure, Road, Architecture. Islamic Azad University, Chalous Branch.
[4] Emami, S., Arvanaghi, H. & Parsa, J. (2017). “Investigation of discharge coefficient of duckbill labyrinth weir with triangular and curved plans”, Journal of Dam and Hydropower Plant, 4(15), 1-11.
[5] Majedi Asl, M. A., & Fooladpanah, M. (2018). “Application of evolutionary systems in determining the dis-charge coefficient of triangular labyrinth weir”, Journal of Soil and Water Sciences (Agricultural Science and Technology and Natural Resources), 22(4), 279-290.
[6] Roushangar, K., Alami, M. T., Shiri, J., & Majedi Asl, M. (2018). “Determining discharge coefficient of laby-rinth and arced labyrinth weirs using support vector machine”, Hydrology Research, 49(3), 924-938.
[7] Haghiabi, A. H., Parsaie, A., & Ememgholizadeh, S. (2018). “Prediction of discharge coefficient of triangular labyrinth weirs using adaptive neuro fuzzy inference system”, Alexandria Engineering Journal, 57(3), 1773-1782.
[8] Emami, S., Arvanaghi, H., & Parsa, J. (2018). “Numerical Investigation of Geometric Parameters Effect of the Labyrinth Weir on the Discharge Coefficient”, Journal of Rehabilitation in Civil Engineering, 6(1), 1-9.
[9] Salazar, F., & Crookston, B. M. (2019). “A performance comparison of machine learning algorithms for arced labyrinth spillways”, Water, 11(3), 544.
[10] Saneie, M. & Forudi, A. (2020). “Enhancing accuracy of discharge capacity prediction of a sharp-crested curved plan-form weirs under free flow conditions using evolutionary algorithms and artificial neural networks”, Journal of Watershed Engineering and Management, 11(4), 891-902.
[11] Bonakdari, H., Ebtehaj, I., Gharabaghi, B., Sharifi, A., & Mosavi, A. (2020). “Prediction of Discharge Ca-pacity of Labyrinth Weir with Gene Expression Programming”, In Proceedings of SAI Intelligent Systems Con-ference, Springer, Cham, 202-217.
[12] Shafiei, S., Najarchi, M., & Shabanlou, S. (2020). “A novel approach using CFD and neuro-fuzzy-firefly algorithm in predicting labyrinth weir discharge coefficient”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(1), 1-19.
[13] Shafie, S., Najarchi, M. & Shabanlu, S. (2020). “Estimation of discharge coefficient of labyrinth weir by new artificial intelligence models”, Journal of Civil Engineering Modares, 20(1), 161-171.
[14] Emami, S., Parsa, J., Emami, H., & Abbaspour, A. (2021). “An ISaDE algorithm combined with support vector regression for estimating discharge coefficient of W-planform weirs”, Water Supply, https://doi.org/10.2166/ws.2021.112.
[15] Henderson, F. M. (1996). Open Channel flow. Macmillan Publishing, New York.
[16] Novak, P., Guinot, V., Jeffrey, A., & Reeve, D. E. (2010). Hydraulic modelling- an introduction. Spon Press, an Imprint of Taylor & Francis, London and New York.
[17] Muro, C. Escobedo, R. Spector, L. & Coppinger, R. (2011). “Wolf-pack (canis lupus) hunting strategies emerge from simple rules in computational simulations”, Behavioural Processes, 88(3), 192-197.
[18] Mech, L. D. (1999). “Alpha Status, dominance, and division of labor in wolf packs”, Canadian Journal of Zoology, 77(8), 1196-1203.
[19] Mirjalili, S. Mirjalili, S. M. & Lewis, A. (2014). “Grey Wolf Optimizer”, Advances in Engineering Software, 69, 46-61.
[20] Khishe, M. Mosavi, M. R. Ghamgosar, A. & Ghalandari, M. J. (2016). “Classification of sonar data set us-ing the gray wolf optimizer algorithm”, Electronics Industries Quartely, 7(1), 27-41.
[21] Emami, H. & Derakhshan, F. (2015). “Election algorithm: A new socio-politically inspired strategy”, AI Communications, 28, 591–603.
[22] Kumar, S., Ahmad, Z., & Mansoor, T. (2011). “A new approach to improve the discharging capacity of sharp-crested triangular plan form weirs”, Flow Measurement and Instrumentation, 22(3), 175-180.
[23] Larose, D. T., & Larose, C. D. (2014). Discovering knowledge in data: an introduction to data mining (Vol. 4). John Wiley & Sons.
[24] Ajdari Moghaddam, M., & Jafari Nodooshan, A. (2013). “Hydraulic design of trapezoidal labyrinth weir using computational hydrodynamics”, Journal of Imran Modares, 13(2), 1-12.
[25] Crookston, B. M. & Tullis, B. P. (2012). “Discharge efficiency of reservoir application specific labyrinth weirs”, Journal of Irrigation and Drainage Engr ASCE, 138(6), 773-776.
[26] Suprapto, M. (2013). “Increase spillway capacity using Labyrinth Weir”, Procedia Engineering, 54, 440-446.
[27] Heydari, M., Doosti, M., & Safari, H. (2015). “Optimization of discharge coefficient of trapezoidal laby-rinth weirs using intelligent simulated annealing algorithm”, 10th International Seminar on River Engineering, Shahid Chamran University, Ahvaz, Iran.
[28] Rehbock, T. (1989). “Discussion of precise weir measurement. In: E. W. Schoder and K. B. Turner (Ed.)”, Journal of Transportation Engineering, 93, 1143 – 1162
[29] Lux, F. (1985). “Design and construction of labyrinth spillways”, 15th Commission Internationale des Grands Barrages, 1985, 249-274.
[30] Shenavaie, H., & Ghodsian, M. (2001). “Effect of crest shape on water discharge coefficient in triangular labyrinth weir”, International Conference on Hydraulic Structures, Kerman.
[31] Mohammadi, M., & Yasi, M. (2007). “Investigation of zigzag overflows with arched plan”, Journal of Ag-ricultural Science and Technology and Natural Resources, 11(41), 1-12.
[32] Bagheri, S., & Heidarpour, M. (2010). “Flow over rectangular sharp-crested weirs”, Irrigation science, 28(2), 173-179.
[33] Kumar, S., Ahmad, Z., Mansoor, T., & Himanshu, S. K. (2012). “Discharge Characteristics of Sharp Crest-ed Weir of Curved Plan-form”, Research Journal of Engineering Science, 1(4), 16-20.