اثر مقاومت مصالح بر ظرفیت محوری ستون های فولادی پر شده با بتن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده فنی مهندسی، دانشگاه آیت ا... بروجردی (ره)، بروجرد ایران.

2 دانشکده فنی مهندسی، دانشگاه آیت ا... بروجردی (ره).

10.22091/cer.2021.6837.1239

چکیده

در سال های اخیر، اعضای با مقطع فولادی پرشده با بتن بدلیل عملکرد هم افزایی بتن و فولاد در ساختمان های بلند، پل ها و سازه های صنعتی مورد استفاده قرار گرفته اند. بررسی آیین‌نامه های مختلف نشان داده است که در طراحی این اعضا محدودیت هایی برای مقاومت بتن و اجزای فولادی ایجاد شده است. در این مطالعه به بررسی محدودیت های اشاره شده برای مقاومت مصالح مورد استفاده در آیین‌نامه های طراحی پرداخته شده و رابطه ای برای تاثیر مصالح مقاومت بالا (خارج از محدوده آیین‌نامه) بر ظرفیت محوری ستون های فولادی پرشده با بتن با استفاده از یک روش سه مرحله ای ارائه گردیده است. مرحله اول شامل تدوین پایگاه داده آزمایشگاهی از اعضای با مصالح مقاومت بالا و ارزیابی امکان گسترش معادلات طراحی برای آنها می‌باشد. مرحله دوم شامل توسعه مدل جدید برای تعیین اثرات مقاومت مصالح بر ظرفیت محوری فشاری این اعضا بر مبنای پایگاه داده توسعه داده در مرحله اول و استفاده از الگوریتم برنامه‌سازی بیان ژنی است. در مرحله سوم، عملکرد رابطه پیشنهادی براساس ضریب تشخیص مرسوم و اصلاح شده (R و rm)، خطای جذر میانگین مربعات (RMSE)، میانگین درصد خطا نسبی (MAPE) و شیب خطوط رگرسیون عبوری از مرکز (k و k’) مورد بررسی قرار گرفته است. همچنین ضریب کاهش مقاومت برای رابطه پیشنهادی ارائه گردیده است. نتایج نشان داده است که رابطه ارائه شده در محدوده پایگاه داده ایجاد شده، دقت قابل قبولی داشته و می‌تواند به عنوان ابزاری مناسب در تخمین ظرفیت محوری ستون‌های ساخته شده از مصالح مقاومت بالا مورد استفاده قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of High-Strength Materials on Axial Capacity of CFT Columns

نویسندگان [English]

  • Masoud Ahmadi 1
  • Mir Rahim Musavi 2
1 Department of Civil Engineering, Ayatollah Boroujerdi University, Boroujerd, Iran
2 Department of Civil Engineering, Ayatollah Boroujerdi University, Boroujerd, Iran
چکیده [English]

The review of existing codes and standards revealed that the design provisions for CFT members with high strength materials are still limited. This paper addresses this gap and suggests simple design equations for high strength square CFT columns using a three-step approach. The first step consists of collecting the experimental database of high-strength square composite column tests from the literature and assessing the possibility of developing the design equations for high-strength CFT columns. The second step consists of developing a nonlinear model for calculating the capacity of high-strength CFT columns using a large number of experimental data by applying gene expression programming. The third step consists of assessing the performance of the proposed relation using the common and modified coefficient of determination (R and rm), root-mean-square error (RMSE), mean absolute percentage error (MAPE), and gradients of regression lines (k and k’). An analysis is also carried out to propose a strength reduction factor (ϕ) for the proposed design equation. The results demonstrated that the proposed model has acceptable efficiency in the range of the experimental database parameters, and the suggested relation can be utilized for the pre-design of high-strength CFT columns.

کلیدواژه‌ها [English]

  • Axial strength؛ concrete filled steel tube
  • high-strength concrete
  • high-strength steel
  • Gene Expression Programming
[1] Denavit, M. D., & Hajjar, J. F. (2014). Characterization of behavior of steel-concrete composite members and frames with applications for design. Newmark Structural Engineering Laboratory. University of Illinois at Urbana-Champaign.
[2] Perea, T., Leon, R. T., Hajjar, J. F., & Denavit, M. D. (2013). “Full-scale tests of slender concrete-filled tubes: axial behavior”, Journal of Structural Engineering, 139(7), 1249-1262.
[3] Thai, S., Thai, H.-T., Uy, B., & Ngo, T. (2019). “Concrete-filled steel tubular columns: Test database, design and calibration”, Journal of Constructional Steel Research, 157, 161–181.
[4] AISC 360-16 “Specification for structural steel buildings”, American Institute of Steel Construction, Chicago, IL.
[5] Eurocode 4. (2004). “Eurocode 4: Design of composite steel and concrete structures”, European Committee for Standardization.
[6] NZS 2327. (2016). “Composite structures - Composite steel-concrete construction in buildings”. Standards Australia/Standards New Zealand.
[7] Lin, C. Y. (1998). “Axial capacity of concrete infilled cold-formed steel columns.” 9th International Specialty Conference on Cold-Formed Steel Structures. University of Missouri-Rolla.
[8] Fujimoto, T., Nishiyama, I., & Mukai, A. (1995). “Test results of eccentrically loaded short columns–square CFT columns”, Proceedings of the second joint technical coordinating committee meeting on composite and hybrid structures.
[9] Schneider, S. P. (1998) “Axially Loaded Concrete-Filled Steel Tubes”, Journal of Structural Engineering, 124(10), 1125–1138.
[10] Kang, C.H., Oh, Y.-S., & Moon, T. S. (2001). “Strength of Axially Loaded Concrete-Filled Tubular Stub Column”, Journal of Korean Society of Steel Construction, 13(3), 279–287.
[11] Han, L.H., Zhao, X.L., & Tao, Z. (2001). “Tests and mechanics model for concrete-filled SHS stub columns, columns and beam-columns”, Steel and Composite Structures, 1(1), 51–74.
[12] Ghannam, S., Jawad, Y.A., & Hunaiti, Y. (2004). “Failure of lightweight aggregate concrete-filled steel tubular columns”, Steel and Composite Structures, 4(1), 1–8.
[13] Tao, Z., Han, L.H., & Wang, Z.B. (2005). “Experimental behaviour of stiffened concrete-filled thin-walled hollow steel structural (HSS) stub columns”, Journal of Constructional Steel Research, 61(7), 962–983.
[14] Yu, Z., Ding, F., & Cai, C. S. (2007). “Experimental behavior of circular concrete-filled steel tube stub columns”, Journal of Constructional Steel Research, 63(2), 165–174.
[15] Tokgoz, S., Dundar, C. (2010) “Experimental study on steel tubular columns in-filled with plain and steel fiber reinforced concrete”, Thin-Walled Structures, 48(6), 414–422.
[16] Lu, Y., Li, N., Li, S., & Liang, H. (2015). “Behavior of steel fiber reinforced concrete-filled steel tube columns under axial compression”, Construction and Building Materials, 95, 74–85.
[17] Naghipour, M., Yousofizinsaz, G., & Shariati, M. (2020). “Experimental study on axial compressive behavior of welded built-up CFT stub columns made by cold-formed sections with different welding lines”, Steel and Composite Structures, 34(3), 347–359.
[18] Nishiyama, I. (2002). “Summary of research on concrete-filled structural steel tube column system carried out under the US-Japan cooperative research program on composite and hybrid structures”, Building Research Inst.
[19] Gourley, B.C., Tort, C., Denavit, M.D., Schiller, P.H., & Hajjar, J.F. (2008). “A synopsis of studies of the monotonic and cyclic behavior of concrete-filled steel tube members, connections, and frames”, Newmark Structural Engineering Laboratory. University of Illinois.
[20] Hajjar, J.F., Gourley, B.C., Tort,C., Denavit, M.D., Schiller, P.H., Mundis, N.L. (2013). “Steel-concrete composite structural systems”, Department of Civil and Environmental Engineering, Northeastern Univiversity, Boston.
[21] Lai, Z., Varma, A.H. (2015). “Noncompact and slender circular CFT members: Experimental database, analysis, and design”, Journal of Constructional Steel Research, 106, 220–233.
[22] Gunawardena, Y.K. R., Aslani, F., Uy, B., Kang, W.H., Hicks, S. (2019). “Review of strength behaviour of circular concrete filled steel tubes under monotonic pure bending”, Journal of Constructional Steel Research, 158, 460–74.
[23] Alatshan, F., Osman, S. A., Hamid, R., Mashiri, F. (2020). “Stiffened concrete-filled steel tubes: A systematic review”, Thin-Walled Structures, 148, 106590.
[24] Cederwall, K., Engstrom, B., & Grauers, M. (1990). “High-strength concrete used in composite columns”, Special Publication, 121, 195–214.
[25] Varma, A.H., Ricles, J.M., Sause, R., Lu, L.W. (2004). “Seismic Behavior and Design of High-Strength Square Concrete-Filled Steel Tube Beam Columns”, Journal of Structural Engineering, 130(2), 169–179.
[26] Uy, B. (2001). “Strength of short concrete filled high strength steel box columns”, Journal of Constructional Steel Research, 57(2), 113–134.
[27] Liu, D., Gho, W.-M., & Yuan, J. (2003). “Ultimate capacity of high-strength rectangular concrete-filled steel hollow section stub columns”, Journal of Constructional Steel Research, 59(12), 1499–1515.
[28] Mursi, M., Uy, B. (2004). “Strength of slender concrete filled high strength steel box columns”, Journal of Constructional Steel Research, 60(12), 1825–1848.
[29] Sakino, K., Nakahara, H., Morino, S., Nishiyama, I. (2004). “Behavior of Centrally Loaded Concrete-Filled Steel-Tube Short Columns”, Journal of Structural Engineering, 130(2), 180–188.
[30] Liu, D. (2005). “Tests on high-strength rectangular concrete-filled steel hollow section stub columns”, Journal of Constructional Steel Research, 61(7), 902–911.
[31] Lue, D. M., Liu, J.-L., & Yen, T. (2007). “Experimental study on rectangular CFT columns with high-strength concrete”, Journal of Constructional Steel Research, 63(1), 37–44.
[32] Aslani, F., Uy, B., Tao, Z., & Mashiri, F. (2015). “Behaviour and design of composite columns incorporating compact high-strength steel plates”, Journal of Constructional Steel Research, 107, 94–110.
[33] Xiong, M.-X., Xiong, D.-X., & Liew, J. Y. R. (2017). “Axial performance of short concrete filled steel tubes with high-and ultra-high-strength materials”, Engineering Structures, 136, 494–510.
[34] Lee, H.J., Park, H.G., & Choi, I.R. (2019). “Compression loading test for concrete-filled tubular columns with high-strength steel slender section”, Journal of Constructional Steel Research, 159, 507–520.
[35] Hu, H.S., Wang, H.Z., Guo, Z.X., Shahrooz, B. (2020). “Axial compressive behavior of square spiral-confined high-strength concrete-filled steel-tube columns”, Journal of Structural Engineering, 146(7), 4020136.
[36] Bradford, M.A., Wright, H.D., & Uy, B. (1998). “Local buckling of the steel skin in lightweight composites induced by creep and shrinkage”, Advances in Structural Engineering, 2(1), 25–34.
[37] Leon, R.T., Kim, D.K., & Hajjar, J.F. (2007). “Limit state response of composite columns and beam-columns part 1: Formulation of design provisions for the 2005 AISC specification”, Engineering Journal, 44(4), 341–358.
[38] Ferreira, C. (2002). “Gene expression programming in problem solving”, Soft computing and industry. Springer, 635–653.
[39] Varma, A.H., Ricles, J. M., & Sause, R. “Seismic behavior, analysis, and design of high strength square concrete filled steel tube (CFT) columns”, Lehigh University.
[40] Lai, Z., and Varma, A.H. (2018). “High-strength rectangular CFT members: Database, modeling, and design of short columns”, Journal of Structural Engineering, 144(5), 4018036.
[41] Tort, C., Hajjar, J.F. “Reliability-based performance-based design of rectangular concrete-filled steel tube (RCFT) members and frames”, Department of Civil and Environmental Engineering, Northeastern Univiversity, Boston.
[42] Golbraikh, A., Tropsha, A. (2002). “Beware of q2!”, Journal of molecular graphics and modelling, 20(4), 269–276.
[43] Roy, P.P., Roy, K. (2008), “On some aspects of variable selection for partial least squares regression models”, Molecular Informatics, 27(3), 302–313.
[44] Smith, G. N. (1986). “Probability and statistics in civil engineering”, Collins London.
[45] Ravindra, M. K., and Galambos, T.V. “Load and resistance factor design for steel”, Journal of the Structural Division, 104(9), 1337–1353.
[46] Galambos, T.V., Ellingwood, B., MacGregor, J.G., Cornell, C.A. (1982). “Probability based load criteria: Assessment of current design practice”, Journal of the Structural Division, 108(5), 959–977.
[47] Ellingwood, B. (1980). “Development of a probability based load criterion for American National Standard A58: Building code requirements for minimum design loads in buildings and other structures”, US Department of Commerce, National Bureau of Standards.
[48] Bartlett, F.M., Dexter, R.J., Graeser, M.D., Jelinek, J.J.; Schmidt, B.J.; Galambos, T.V. (2003). “Updating standard shape material properties database for design and reliability”, Engineering Journal-American Institute of Steel Construction Inc, 40(1), 2–14.
[49] Sener, K. C., Varma, A. H. (2014). “Steel-plate composite walls: Experimental database and design for out-of-plane shear,” Journal of Constructional Steel Research, 100, 197–210.
[50] ASCE7. (2010). “Minimum design loads for buildings and other structures”, American Society of Civil Engineers.
CAPTCHA Image