[1] Engelund, S., & Rackwitz, R. (1993). “A benchmark study on importance sampling techniques in structural reliability”, Structural Safety, 12(4), 255-276.
[2] Sorensen, J. D. (2004). “Structural Reliability Theory And Risk Analysis”, Institute of Building Technology and Structural Engineering, Aalborg University.
[3] Escuder-Bueno, I., Altarrejos-Garcia, L., & Serrano-Lombillo, A. (2012). “Methodology for estimating the probability of failure by sliding in concrete gravity dams in the context of risk analysis”, Structural Safety, 36, 1-13.
[4] Kiureghian, D. A., & Dakessian, T. (1998). “Multiple design points in first and second order reliability”, Struct Safety, 20, 37-49.
[5] Rahman, S., & Wei, D. (2006). “A univariate approximation at most probable point for higher-order reliability analysis”, International journal of solids and structures, 43(9), 2820-2839.
[6] Rackwitz, R. (1988). “Updating first and second-order reliability estimates by importance sampling”, Doboku Gakkai Ronbunshu, 1988(392), 53-59.
[7] Rackwitz, R., & Fiessler, B. (1978). “Structural reliability under combined random load sequences”, Computers & Structures, 9(5), 489-494.
[8] Kubler, O. (2007). Applied decision-making in civil engineering. Vol. 300, vdf Hochschulverlag AG.
[9] Cornell, A. (1969). “A probability based structural code”, Journal Proceedings, 66(12), 974-985.
[10] Hasofer, A. M., & Lind, N. C. (1974). “Exact and invariant second-moment code format”, Journal of the Engineering Mechanics division, 100(1), 111-121.
[11] Tu, J., Choi, K. K., & Park, Y. H. (1999). “A New Study on Reliability-Based Design Optimization”, Journal of Mechanical Design, 121(4), 557-564.
[12] Bartelt,
P., Adams,
E., Christen,
M., Sack,
R., & Sato,
A. (2004). Snow Engineering V. Proceedings of the Fifth International Conference on Snow Engineering, Davos, Switzerland.
[13] Hohenbichler, M., & Rackwitz, R. (1986). “Sensitivity and importance measures in structural reliability”, Civil engineering systems, 3(4), 203-209.
[14] Fiessler, B., Neumann, H. J., & Rackwitz, R. (1979). “Quadratic limit states in structural reliability”, Journal of the Engineering Mechanics Division, 105(4), 661-676.
[15] McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). “Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code”, Technometrics, 21(2), 239–245.
[16] Thoft-Cristensen, P., & Baker, M. J. (2012). Structural reliability theory and its applications. Springer Science & Business Media.
[17] Denny, M. (2001). “Introduction to importance sampling in rare-event simulations”, European Journal of Physics, 22(4), 403-411.
[18] Xu, Q., Chen, J., & Li, J. (2012). “A Study on the Functional Reliability of Gravity Dam”, Energy and Power Engineering, 4(2), 59-66.
[19] Bretas, E. M., Lemos, J. V., & Lourenco, P. B. (2014). “A DEM based tool for the safety analysis of masonry gravity dams”, Engineering Structures, 59, 248-260.
[20] Nowak, A. S., & Collins, K. R. (2012). Reliability of Structures. CRC Press.
[21] Khatibinia, M., & Khosravi, S. (2014). “A hybrid approach based on an improved gravitational search algorithm and orthogonal crossover for optimal shape design of concrete gravity dams”, Applied Soft Computing, 16, 223-233,
[22] USBR. (1976). Design of Gravity Dams. United States Department of the Interior, USA.
[23] FERC. (2002). “Manual for engineering guidelines for the evaluation of hydropower project”, (http://www.ferc.gov), USA.
[24] Su, H., & Wen, Z. (2013). “Interval risk analysis for gravity dam instability”, Engineering Failure Analysis, 33, 83-96.
[25] Teng-Fei, B., Miao, X., & Lan, C. (2012). “Stability Analysis of Concrete Gravity Dam Foundation Based on Catastrophe Model of Plastic Strain Energy”, Procedia engineering, 28, 825-830.
[26] Zhang, S., Wang, G., Wang, C., Pang, B., & Du, C. (2014). “Numerical simulation of failure modes of concrete gravity dams subjected to underwater explosion”, Engineering Failure Analysis, 36, 49-64.
[27] Kartal, M. E., Bayraktar, A., & Basaga. H. B. (2010). “Seismic failure probability of concrete slab on CFR dams with welded and friction contacts by response surface method”, Soil Dynamics and Earthquake Engineering, 30(11), 1383-1399.
[28] Jiang, S., Du. C., & Hong. Y. (2013). “Failure analysis of a cracked concrete gravity dam under earthquake”, Engineering Failure Analysis, 33, 265-280.
[29] Kartal, M. E., Basaga, H. B., & Bayraktar, A. (2011). “Probabilistic nonlinear analysis of CFR dams by MCS using Response Surface Method”, Applied Mathematical Modelling, 35(6), 2752-2770.
[30] Bretas, E. M., Léger, P., & Lemos, J. V. (2012). “3D Stability analysis of gravity dams on sloped rock foundations using the limit equilibrium method”, Computers and Geotechnics, 44, 147-156.
[31] Zhang, J., Xiao, M., & Gao, L. (2019). “A new method for reliability analysis of structures with mixed random and convex variables”, Applied Mathematical Modelling, 70, 206-220.
[32] Xu, J., & Kong, F. (2019). “Adaptive scaled unscented transformation for highly efficient structural reliability analysis by maximum entropy method”, Structural Safety, 76, 123-134.
[33] Mustapha, A., & Abejide, O. (2019). “Probabilistic Strength of Steel Poles Used for Power Production and Transmissions”, Reliability Engineering and Resilience, 1(1), 29-41.
ارسال نظر در مورد این مقاله