مطالعه پارامتریک اثر گسترش ترک بر روی دیوار برشی فولادی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه سازه و زلزله، دانشگاه علم و صنعت ایران.

2 دانشیار، گروه سازه و زلزله، دانشگاه علم و صنعت ایران.

3 دانشجوی دکتری سازه، دانشگاه علم و صنعت ایران.

چکیده

مطالعات عددی و آزمایشگاهی انجام شده بر روی دیوار برشی فولادی و همچنین عملکرد آن در زلزله های گذشته موید یک سیستم کارا در برابر بارهای جانبی است. این سیستم دارای شکل پذیری، سختی و مقاومت بالایی است. هر چند تاکنون مطالعات زیادی بر روی این سیستم انجام شده است اما همچنان ناشناخته های زیادی در خصوص آن وجود دارد. در میان این ناشناخته ها، تاثیر ترک بر رفتار سیستم با توجه به تحقیقات کم در این زمینه کاملا مشهود است که تاثیر قابل ملاحظه ای بر روی رفتار این سیستم دارد. بنابراین در این مقاله، تاثیر ترک های میانی و کناری و گسترش آنها بر رفتار لرزه ای دیوار برشی فولادی مورد بررسی قرار گرفته است. نتایج نشان می دهد که ترکهای میانی ورق فولادی اثر مخرب تری نسبت به ترکهای کناری دارد. ترک های میانی با طول زیاد باعث می شود که سیستم در ناحیه الاستیک گسیخته شود همچنین گسترش ترک تاثیر کمی بر سختی الاستیک دارد. علاوه بر آن، ضرایب رفتار دیوار برشی فولادی با وجود ترک ارائه شده است. همچنین برای دست یابی به نمودار بار-تغییر مکان یک مدل پارامتریک ارائه شده که بدون استفاده از مدل سازی المان محدود به نمودار بار-تغییر مکان دست یافت. در این مدل، اثر ترک و همچنین گسترش آن لحاظ خواهد شد.

کلیدواژه‌ها


عنوان مقاله [English]

Parametric study of crack growth effect on steel plate shear wall

نویسندگان [English]

  • Vahid Broujerdian 1
  • Mohsenali Shayanfar 2
  • Ali Ghamari 3
1 Assistant Professor, Department of Civil Engineering, Iran University of Science and Technology
2 Associate Professor, Department of Civil Engineering, Iran University of Science and Technology
3 PhD candidate, Department of Civil Engineering, Iran University of Science and Technology
چکیده [English]

Experimental and numerical study have carried out on behavior of Steel Plate Shear Wall (SPSW) and also, its good performance during past earthquakes have been testified a capable system against lateral load. The system have high ductility, stiffness and strength under seismic loading during a sever earthquake. Although, enormous studies have been performed till now, there are several unkhown problems about this system. Effect of crack on SPSW behavior is obviously one of the important between the unkhowns that have considerable effect on the behavior of SPSW. Therefore, in this study the effect of crack on SPSW is investigated. Results indicated that central crack is more critical than edge cracks. The results show that long central cracks cause the system fails in a brittle manner. In addition, a model have been proposed to obtain load-displacement curve without finite element modeling. On the proposed model the crack and its propagation is consider.

کلیدواژه‌ها [English]

  • steel shear wall
  • crack
  • seismic behavior
  • response modification factor
  • extended finite element method
[1] Guz, A.N., & Dyshel, M.S. (2004). “Stability and residual strength of panels with straight and curved cracks”, Theoretical and applied fracture mechanics, 41(1), 95-101.
[2] Paik, J.K. (2008). “Residual ultimate strength of steel plates with longitudinal cracks under axial compres-sion–experiments”, Ocean engineering, 35(17), 1775-1783.
[3] Paik, J.K. (2009). “Residual ultimate strength of steel plates with longitudinal cracks under axial compres-sion—nonlinear finite element method investigations”, Ocean Engineering, 36(3), 266-276.
[4] Brighenti, R. (2010). “Influence of a central straight crack on the buckling behaviour of thin plates under tension, compression or shear loading”, International Journal of Mechanics and Materials in Design, 6(1), 73-87.
[5] Alinia, M.M., Hosseinzadeh, S.A.A., & Habashi, H.R. (2007). “Numerical modelling for buckling analysis of cracked shear panels”, Thin-Walled Structures, 45(12), 1058-1067.
[6] Alinia, M.M., Hosseinzadeh, S.A.A., & Habashi, H.R. (2007). “Influence of central cracks on buckling and post-buckling behaviour of shear panels”, Thin-Walled Structures, 45(4), 422-431.
[7] Lin, C.H., Tsai, K.C., Lin, Y.C., Wang, K.J., Qu, B., & Bruneau, M. (2007). “Full scale steel plate shear wall: NCREE/MCEER phase I tests”, In Proceeding of the 9th Canadian Conference on Earthquake Engineering, Ottawa, Ontario, Canada, 26-29.
[8] Guendel, M., Hoffmeister, B., & Feldmann M. (2011).“Experimental and numerical investigations on Steel Shear Walls for seismic Retrofitting”, Proceedings of the 8th International Conference on Structural Dynam-ics, EURODYN.
[9] Berman, J.W., & Bruneau, M. (2005). “Experimental investigation of light-gauge steel plate shear walls”, Journal of Structural Engineering, 131(2), 259-267.
[10] Kharrazi, M. (2005). “Fish plate behavior on Steel plate shear wall”, Canadian journal of civil engineer-ing, 96-108.
[11] Yaghoubshahi, M., Alinia, M.M., Testa, G., & Bonora, N. (2015). “On the postbuckling of flawed shear panels considering crack growth effect”, Thin-Walled Structures, 97, 186-198.
[12] Siegmund, T. (2004). “A numerical study of transient fatigue crack growth by use of an irreversible cohe-sive zone model”, International Journal of Fatigue, 26(9), 929-939.
[13] Roe, K. L., & Siegmund, T. (2003). “An irreversible cohesive zone model for interface fatigue crack growth simulation”, Engineering fracture mechanics, 70(2), 209-232.
[14] Bouvard, J.L., Chaboche, J.L., Feyel, F., & Gallerneau, F. (2009). “A cohesive zone model for fatigue and creep–fatigue crack growth in single crystal superalloys”, International Journal of Fatigue, 31(5), 868-879.
[15] Liu, P.F., Hou, S.J., Chu, J.K., Hu, X.Y., Zhou, C.L., Liu, Y.L., & Yan, L. (2011). “Finite element analysis of postbuckling and delamination of composite laminates using virtual crack closure technique”, Composite Structures, 93(6), 1549-1560.
[16] Fawaz, S.A. (1998). “Application of the virtual crack closure technique to calculate stress intensity factors for through cracks with an elliptical crack front”, Engineering Fracture Mechanics, 59(3), 327-342.
[17] Servetti, G., & Zhang, X. (2009). “Predicting fatigue crack growth rate in a welded butt joint: The role of effective R ratio in accounting for residual stress effect”, Engineering Fracture Mechanics, 76(11), 1589-1602.
[18] Belytschko, T., & Black, T. (1999). “Elastic crack growth in finite elements with minimal remesh-ing”, International journal for numerical methods in engineering, 45(5), 601-620.
[19] Belytschko, T., Chen, H., Xu, J., & Zi, G. (2003). “Dynamic crack propagation based on loss of hyperbolici-ty and a new discontinuous enrichment”, International journal for numerical methods in engineering, 58(12), 1873-1905.
[20] Dolbow, J.O.H.N., & Belytschko, T. (1999). “A finite element method for crack growth without remesh-ing”, International journal for numerical methods in engineering, 46(1), 131-150.
[21] Moës, N., & Belytschko, T. (2002). “Extended finite element method for cohesive crack growth”, Engineering fracture mechanics, 69(7), 813-833.
[22] Sukumar, N., Moës, N., Moran, B., & Belytschko, T. (2000). “Extended finite element method for three-dimensional crack modelling”, International Journal for Numerical Methods in Engineering, 48(11), 1549-1570.
[23] Sukumar, N., Huang, Z.Y., Prévost, J.H., & Suo, Z. (2004). “Partition of unity enrichment for bimaterial interface cracks”, International journal for numerical methods in engineering, 59(8), 1075-1102.
[24] Giner, E., Sukumar, N., Tarancon, J.E., & Fuenmayor, F.J. (2009). “An Abaqus implementation of the ex-tended finite element method”, Engineering fracture mechanics, 76(3), 347-368.
[25] Campilho, R.D.S.G., Banea, M.D., Chaves, F.J.P., & Da Silva, L.F.M. (2011). “EXtended Finite Element Method for fracture characterization of adhesive joints in pure mode I”, Computational Materials Sci-ence, 50(4), 1543-1549.
[26] Hibbitt, M. A. Karlsson & Sorensen. (2012). ABAQUS User's Manual
[27] Sabouri-Ghomi, S., Ventura, C.E., & Kharrazi, M.H. (2005). “Shear analysis and design of ductile steel plate walls”, Journal of Structural Engineering, 131(6), 878-889.
[28] Richard. H, A, Fulland. M, Sander. M., Theoretical Crack Path Prediction, Blackwell Publishing, 2004.
[29] Shukla, A. Practical fracture mechanics in design (2nd ed.). New York, NY: Marcel Dekker, 2005.
CAPTCHA Image