تقویت ویژگی‌های خمشی رس کائولینیت تثبیت‌شده با تسلیح به الیاف مرکب

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی عمران، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران.

چکیده

در این پژوهش، از یک نوع الیاف جدید به نام الیاف مرکب جهت تقویت ویژگی‌های خمشی رس تثبیت‌شده استفاده گردیده است. هسته‌ الیاف مرکب شامل یک لیف الاستان و پوسته‌ آن متشکل از تعداد زیادی الیاف پلی‌استر می‌باشد. در این راستا، از رس کائولینیت، آهک با محتوای وزنی 1، 3 و 5 درصد، الیاف مرکب با مقادیر وزنی 1.5، 2.5 و 3.5 درصد و طول‌های 6 و 12 میلی‌متر جهت آماده‌سازی، و دوره‌های 7 و 28 روزه برای عمل‌آوری نمونه‌ها استفاده شده است. به منظور بررسی‌های کمی و کیفی، آزمایش خمش سه‌نقطه‌ای و میکروسکوپ‌های نوری و الکترونی روبشی به کار گرفته شده‌اند. نتایج نشان دادند که تسلیح کائولینیت تثبیت‌شده با الیاف مرکب موجب بهبود 10 تا 78 درصدی مقاومت خمشی و 3 تا 41.5 برابری کرنش متناظر با آن گشته است. یافته‌ها همچنین نشان دادند که عملکرد الیاف مرکب در افزایش مقاومت و شکل‌پذیری خمشی کائولینیت تثبیت‌شده رابطه‌ مستقیمی با محتوای وزنی و طول الیاف، مقدار وزنی آهک و زمان عمل‌آوری داشته است. علاوه بر آن، ارزیابی‌های کمی آشکار کردند که ساختار دو بخشی الیاف مرکب به خصوص پوسته‌ پلی‌استری پیچیده شده به دور هسته‌ الاستان، به دلیل تعداد بالا و عمود بودن بر راستای کشش، اندرکنش مکانیکی مناسبی با خاک ایجاد نموده و به خوبی در برابر نیروهای بیرون‌کشیدگی مقاومت نموده‌ است. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Enhancing the Flexural Characteristics of Stabilized Kaolinite Clay by Reinforcing with Composite Fiber

نویسندگان [English]

  • Mahmood Reza Abdi
  • Elham Abbasi
  • Mahdi Safdari Seh Gonbad
Faculty of Civil Engineering, K.N. Toosi University of Technology, Tehran, Iran.
چکیده [English]

In this research, a new type of fiber known as composite fibers has been utilized to enhance the flexural properties of stabilized clay. The core of the composite fiber consists of elastane, while its shell is composed of numerous polyester fibers. In this regard, kaolinite clay, lime at weight contents of 1, 3, and 5%, and composite fibers at weight contents of 1.5, 2.5, and 3.5%, with lengths of 6 and 12 mm, have been employed for sample preparation, along with curing periods of 7 and 28 days. For quantitative and qualitative investigations, three-point bending tests, as well as optical and scanning electron microscopy, have been employed. The results indicated that the reinforcement of stabilized kaolinite with composite fibers led to improvements of 10 to 78% in flexural strength and a factor 3.1 to 41.5 in the corresponding strain. The findings also demonstrated that the performance of composite fibers in enhancing the strength and ductility of stabilized kaolinite is directly related to the content and length of the fibers, the lime content, and the curing time. Furthermore, quantitative evaluations revealed that the dual structure of the composite fibers, particularly the polyester shell wrapped around the elastane core, created suitable mechanical interaction with the soil due to their high number and perpendicular orientation to the tensile direction, effectively strengthening resistance against pull-out forces.

کلیدواژه‌ها [English]

  • Composite Fiber
  • Kaolinite
  • Lime
  • Flexural Strength
  • Three-Point Bending Test
[1] Mohseninia M, Salehzadeh H. Assessment of Key Factors Impacting Permeability in Treated Firouzkooh Siliceous Sand and Hormuz Carbonate Sand Using Persian Gum Biopolymer. Civil Infrastructure Researches. 2024; 10(1): 125-135. doi: 10.22091/cer.2024.9999.1515 [In Persian]
[2] Ahmadi M, Bagherieh AR, Mohammadipour F. Evaluating the Seismic Bearing Capacity of Strip Foundation Adjacent to Geogrid-Reinforced Slopes Using Finite Element Limit Analysis Method. Civil Infrastructure Researches. 2024; 10(1): 169-185. doi: 10.22091/cer.2024.10058.1519 [In Persian]
[3] Ranjbar Taklymie MM, Hatami F. Enhancement of Mechanical Properties, Drying Shrinkage and High Temperature Resistance of Geopolymer Mortar Containing Ground Granulated Blast Furnace Slag and Red Mud with Basalt Fiber. Civil Infrastructure Researches. 2024; 10(1): 67-83. doi: 10.22091/cer.2023.9855.1511 [In Persian]
[4] Safdari Seh Gonbad M, Abdi MR. Exploring the influence of mixing energy on strength of sand treated by deep soil mixing. Journal of Rock Mechanics and Geotechnical Engineering. 2025. doi: 10.1016/j.jrmge.2025.04.038
[5] Safdari Seh Gonbad M, Abdi MR. Development of a Laboratory-Scale Deep Soil Mixing Device for Assessing the Influential Factors on Strength of DSM Columns. Civil Infrastructure Researches. 2025; 11(1): 145-166. doi: 10.22091/cer.2025.12467.1606 [In Persian]
[6] Kalantary F, Abbasi Govanjik D, Safdari Seh Gonbad M. Stimulation of native microorganisms for improving loose salty sand. Geomicrobiology Journal. 2019; 36(6): 533-542. doi: 10.1080/01490451.2019.1579876
[7] Safdari Seh Gonbad M, Abdi MR. Influence of mixing time and execution procedure on strength characteristics of improved sand using deep soil mixing (DSM) method. Construction and Building Materials. 2024; 448: 138115. doi: 10.1016/j.conbuildmat.2024.138115
[8] Safdari Seh Gonbad M, Abdi MR. Construction of a DSM Apparatus to Evaluate the Effects of Soil Bed Moisture Content, Cement Dosage, and Total Water-to-Cement Ratio on Mixing Quality and Strength of DSM Columns. International Journal of Geosynthetics and Ground Engineering. 2025; 11(5): 49. doi: 10.1007/s40891-025-00654-7
[9] Abdi MR, Chehregosha A, Farzalizadeh R. Effects of miscellaneous plasticity on behavior of lime-treated kaolinites. International Journal of Geotechnical Engineering. 2021; 15(8): 1040-1050. doi: 10.1080/19386362.2019.1677401
[10] Shaji S, Divya PV. Sustainable ground improvement of soft clay using eggshell lime and rice husk ash. Construction and Building Materials. 2024; 441: 137460. doi: 10.1016/j.conbuildmat.2024.137460
[11] Abdi MR, Abbasi E, Safdari Seh Gonbad M. Performance comparison of polypropylene and elastic fibers in enhancing the flexural behavior of lime-stabilized kaolinite clay. Construction and Building Materials. 2025; 478: 141422. doi: 10.1016/j.conbuildmat.2025.141422 [In Persian]
[12] Ramkrishnan R, Sruthy MR, Sharma A, Karthik V. Effect of random inclusion of sisal fibres on strength behavior and slope stability of fine grained soils. Materials Today: Proceedings. 2018 Jan 1; 5(11): 25313-25322. doi: 10.1016/j.matpr.2018.10.334
[13] Zhao Y, Yang Y, Ling X, Gong W, Li G, Su L. Dynamic behavior of natural sand soils and fiber reinforced soils in heavy-haul railway embankment under multistage cyclic loading. Transportation Geotechnics. 2021; 28: 100507. doi: 10.1016/j.trgeo.2020.100507
[14] Sengul T, Akray N, Vitosoglu Y. Investigating the effects of stabilization carried out using fly ash and polypropylene fiber on the properties of highway clay soils. Construction and Building Materials. 2023; 400: 132590. doi: 10.1016/j.conbuildmat.2023.132590
[15] Ma Y, Bao H, Yan C, Lan H, Peng J, Zheng H, Song Z, Liu C. Mechanical properties and microstructure evolution of two ecological slope-protection materials under dry-wet cycles. Journal of cleaner production. 2023; 416: 137833. doi: 10.1016/j.jclepro.2023.137833
[16] Punthutaecha K, Puppala AJ, Vanapalli SK, Inyang H. Volume change behaviors of expansive soils stabilized with recycled ashes and fibers. Journal of materials in Civil Engineering. 2006; 18(2): 295-306. doi: 10.1061/(ASCE)0899-1561(2006)18:2(295)
[17] Kumar A, Walia BS, Bajaj A. Influence of fly ash, lime, and polyester fibers on compaction and strength properties of expansive soil. Journal of materials in civil engineering. 2007; 19(3): 242-248. doi: 10.1061/(ASCE)0899-1561(2007)19:3(242)
[18] Muntohar AS. Influence of plastic waste fibers on the strength of lime-rice husk ash stabilized clay soil. Civil Engineering Dimension. 2009; 11(1): 32-40.
[19] Yin Y, Yu XJ. Research on triaxial shear properties of glass fiber cement soil. In Instrumentation, Testing, and Modeling of Soil and Rock Behavior 2011; 179-185. doi: 10.1061/47633(412)24
[20] Li M, Chai SX, Zhang HY, Du HP, Wei L. Feasibility of saline soil reinforced with treated wheat straw and lime. Soils and foundations. 2012; 52(2): 228-238. doi: 10.1016/j.sandf.2012.02.003
[21] Kalkan E. Preparation of scrap tire rubber fiber–silica fume mixtures for modification of clayey soils. Applied Clay Science. 2013; 80: 117-125. doi: 10.1016/j.clay.2013.06.014
[22] Anggraini V, Asadi A, Huat BB, Nahazanan H. Effects of coir fibers on tensile and compressive strength of lime treated soft soil. Measurement. 2015; 59: 372-381. doi: 10.1016/j.measurement.2014.09.059
[23] Yilmaz YÜ. Compaction and strength characteristics of fly ash and fiber amended clayey soil. Engineering Geology. 2015; 188: 168-177. doi: 10.1016/j.enggeo.2015.01.018
[24] Nagrale PP, Patil AP, Bhaisare S. Strength characteristics of subgrade stabilized with lime, fly ash and fibre. International Journal of Engineering Research. 2016; 5(1): 74-79. doi: 10.17950/ijer/v5i1/017
[25] Abdi MR, Mirzaeifar H. Effects of discrete short polypropylene fibers on behavior of artificially cemented kaolinite. International Journal of Civil Engineering. 2016; 14: 253-262. doi: 10.1007/s40999-016-0022-5
[26] Ayeldeen M, Kitazume M. Using fiber and liquid polymer to improve the behaviour of cement-stabilized soft clay. Geotextiles and Geomembranes. 2017; 45(6): 592-602. doi: 10.1016/j.geotexmem.2017.05.005
[27] Muthukumar M, Sekar SK, Shukla SK. Swelling and shrinkage behaviour of expansive soil blended with lime and fibres. In International Congress and Exhibition Sustainable Civil Infrastructures: In novative Infrastructure Geotechnology. 2017; 39-48. doi: 10.1007/978-3-319-63570-5_4
[28] Subhradeep D, Monowar H. The Tensile Strength Behavior of Lime-Stabilized Soft Soil with Inclusion of Plastic Fiber. InGround Improvement Techniques and Geosynthetics: IGC 2016. 2018; 2: 211-218. doi: 10.1007/978-981-13-0559-7_24
[29] Shenal Jayawardane V, Anggraini V, Emmanuel E, Yong LL, Mirzababaei M. Expansive and compressibility behavior of lime stabilized fiber-reinforced marine clay. Journal of Materials in Civil Engineering. 2020; 32(11): 04020328. doi: 10.1061/(ASCE)MT.1943-5533.0003430
[30] Abdi MR, Ghalandarzadeh A, Shafiei Chafi L. An investigation into the effects of lime on compressive and shear strength characteristics of fiber-reinforced clays. Journal of Rock Mechanics and Geotechnical Engineering. 2021; 13(4): 885-898. doi: 10.1016/j.jrmge.2020.11.008
[31] Owino AO, Nahar N, Hossain Z, Tamaki N. Dimensional influence of basalt fiber reinforcements on the consolidation behaviour of rice husk ash stabilized soils. Construction and Building Materials. 2022; 339: 127686. doi: 10.1016/j.conbuildmat.2022.127686
[32] Arabani M, Shalchian MM, Rahimabadi MM. The influence of rice fiber and nanoclay on mechanical properties and mechanisms of clayey soil stabilization. Construction and Building Materials. 2023; 407: 133542. doi: 10.1016/j.conbuildmat.2023.133542
[33] Hu Z, Sun R, Wang Y, Wang C, Zhao Y. Experimental research on shear strength characteristics of cement-stabilized dredged silty clay reinforced with alginate fiber. Construction and Building Materials. 2024; 444: 137858. dio: 10.1016/j.conbuildmat.2024.137858
[34] Salimi M, Payan M, Hosseinpour I, Arabani M, Ranjbar PZ. Impact of clay nano-material and glass fiber on the efficacy of traditional soil stabilization technique. Materials Letters. 2024; 360: 136046. doi: 10.1016/j.matlet.2024.136046
[35] Baldovino JD, de la Rosa YE, Calabokis OP, Vergara JA, López LC. Geotechnical Behavior of Xanthan Gum-Stabilized Clay Reinforced with Polypropylene Fibers. Polymers. 2025; 17(3): 363. doi: 10.3390/polym17030363
[36] Venkateswarlu H, Prasad AC, Jadda K. Effect of Triangular-Shaped Fiber on Geotechnical Behavior of Lime-Treated Expansive Clay. Indian Geotechnical Journal. 2025: 1-5. doi: 10.1007/s40098-025-01223-5
[37] Luo DY, Lang L, Zhang B. Splitting tensile strength behavior of dredged sediment with cement stabilization and straw fiber reinforcement. Journal of Material Cycles and Waste Management. 2025; 27: 1379-1393. doi: 10.1007/s10163-025-02177-9
[38] Tajdini M, Nabizadeh A, Taherkhani H, Zartaj H. Effect of added waste rubber on the properties and fail-ure mode of kaolinite clay. International Journal of Civil Engineering. 2017; 15: 949-958. doi: 10.1007/s40999-016-0057-7
[39] Afshar M, Alipour A, Norouzbeigi R. Kaolin-based stable colloidal nano-silica: Peptization factors and stability assessments via designed experiments. Results in Engineering. 2024; 21: 101654. doi: 10.1016/j.rineng.2023.101654
[40] Abdi MR, Ebrahimi M. Impact of plasticity characteristics on wet-dry response of fiber reinforced clays. Bulletin of Engineering Geology and the Environment. 2025; 84(1): 53. doi: 10.1007/s10064-024-04081-2
[41] Abdi, MR, Abbasi E, Safdari Seh Gonbad M. Assessing Flexural Behavior of Stabilized and Reinforced Clay. Civil Infrastructure Researches. 2025; 11(1): 51-67. doi: 10.22091/cer.2025.12150.1596 [In Persian]
[42] Abdi MR, Wild S. Sulphate expansion of lime-stabilized kaolinite: I. Physical characteristics. Clay Minerals. 1993; 28(4): 555-567. doi: /10.1180/claymin.1993.028.4.06
[43] Wild S, Abdi MR, Leng-Ward G. Sulphate expansion of lime-stabilized kaolinite: II. Reaction products and expansion. Clay minerals. 1993; 28(4): 569-83. doi: 10.1180/claymin.1993.028.4.07
[44] Hatefi MH, Arabani M, Payan M, Ranjbar PZ. The influence of volcanic ash (VA) on the mechanical properties and freeze-thaw durability of lime kiln dust (LKD)-stabilized kaolin clayey soil. Results in Engineering. 2024; 24: 103077. doi: 10.1016/j.rineng.2024.103077
[45] Abdi MR, Hajalilue Bonab M, Jalilzadeh Z. Impact of various binders on loess durability subjected to different freeze-thaw regimes. European Journal of Environmental and Civil Engineering. 2024; 28(8): 1924-1942. doi: 10.1080/19648189.2023.2286470
[46] Cai Y, Shi B, Ng CW, Tang CS. Effect of polypropylene fibre and lime admixture on engineering properties of clayey soil. Engineering geology. 2006; 87(3-4): 230-240. doi: 10.1016/j.enggeo.2006.07.007
[47] Al-Mukhtar M, Lasledj A, Alcover JF. Behaviour and mineralogy changes in lime-treated expansive soil at 20 C. Applied clay science. 2010; 50(2): 191-198. doi: 10.1016/j.clay.2010.07.023
[48] Dash SK, Hussain M. Lime stabilization of soils: reappraisal. Journal of materials in civil engineering. 2012; 24(6): 707-714. doi: 10.1061/(ASCE)MT.1943-5533.0000431
[49] Aqel R, Attom M, El-Emam M, Yamin M. Piping Stabilization of Clay Soil Using Lime. Geosciences. 2024; 14(5): 122. doi: 10.3390/geosciences14050122
[50] Ahmed A, El-Emam M, Ahmad N, Attom M. Stabilization of Pavement Subgrade Clay Soil Using Sugarcane Ash and Lime. Geosciences. 2024; 14(6): 151. doi: 10.3390/geosciences14060151
[51] ASTM C1609/C1609M-12; Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading). ASTM International: West Conshohocken, PA, USA. 2019. doi: 10.1520/C1609_C1609M-12
[52] ASTM D698-12R21; Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International: West Conshohocken, PA, USA. 2021. doi: 10.1520/D0698-12R21
[53] Moghal AA, Chittoori BC, Basha BM, Al-Shamrani MA. Target reliability approach to study the effect of fiber reinforcement on UCS behavior of lime treated semiarid soil. Journal of Materials in Civil Engineering. 2017; 29(6): 04017014. doi: 10.1061/(ASCE)MT.1943-5533.0001835
[54] Boz A, Sezer A, Özdemir T, Hızal GE, Azdeniz Dolmacı Ö. Mechanical properties of lime-treated clay reinforced with different types of randomly distributed fibers. Arabian Journal of Geosciences. 2018; 11: 1-4. doi: 10.1007/s12517-018-3458-x.
[55] Moghal AA, Chittoori BC, Basha BM. Effect of fibre reinforcement on CBR behaviour of lime-blended expansive soils: reliability approach. Road Materials and Pavement Design. 2018; 19(3): 690-709. doi: 10.1061/9780784480069.004
[56] Prakash K, Sridharan A, Rao SM. Lime addition and curing effects on the index and compaction characteristics of a montmorillonitic soil. Geotechnical Engineering. 1989; 20(1): 39-47.
[57] Hussain M, Dash SK. The influence of lime on the compaction behaviour of soils. Environmental Geotechnics. 2015; 3(5): 346-352. doi: 10.1680/ envgeo.14.00015 
[58] Negawo WJ, Di Emidio G, Bezuijen A, Verastegui Flores RD, François B. Lime-stabilisation of high plasticity swelling clay from Ethiopia. European Journal of Environmental and Civil Engineering. 2019; 23(4): 504-514. doi: 10.1080/19648189.2017.1304272
[59] Rajasekaran G. Sulphate attack and ettringite formation in the lime and cement stabilized marine clays. Ocean engineering. 2005; 32(8-9): 1133-1159. doi: 10.1016/j.oceaneng.2004.08.012
[60] Eren Ş, Filiz M. Comparing the conventional soil stabilization methods to the consolid system used as an alternative admixture matter in Isparta Darıdere material. Construction and Building Materials. 2009; 23(7): 2473-2480. doi: 10.1016/j.conbuildmat.2009.01.002
[61] Harichane K, Ghrici M, Missoum H. Influence of natural pozzolana and lime additives on the temporal variation of soil compaction and shear strength. Frontiers of Earth Science. 2011; 5: 162-169. doi: 10.1007/s11707-011- 0166-1
[62] Anggraini V, Asadi A, Huat BK. Durability of lime treated soil reinforced by natural fiber under bending force. International Journal of Geological and Environmental Engineering. 2015; 9(12): 1400-1404.
[63] Liang L, Xu Y, Hu S. Bending and crack evolution behaviors of cemented soil reinforced with surface modified PVA fiber. Materials. 2022; 15(14): 4799. doi: 10.3390/ma15144799
[64] Wang Y, Liu Z, Wan W, Nie A, Zhang Y, Han C. Toughening effect and mechanism of rice straw Fiber-reinforced lime soil. Construction and Building Materials. 2023; 393: 132133. doi: 10.1016/j.conbuildmat.2023.132133
[65] Kamiloğlu HA, Kurucu K, Akbaş D. Investigating the effect of polypropylene fiber on mechanical features of a geopolymer-stabilized silty soil. KSCE Journal of Civil Engineering. 2024; 28(2): 628-643. doi: 10.1007/s12205-023-0488-z
[66] Anggraini V, Asadi A, Syamsir A, Huat BB. Three point bending flexural strength of cement treated tropical marine soil reinforced by lime treated natural fiber. Measurement. 2017: 111: 158-166. doi: 10.1016/j.measurement.2017.07.045
[67] Abdi MR, Askarian A, Safdari Seh Gonbad M. Effects of sodium and calcium sulphates on volume stability and strength of lime-stabilized kaolinite. Bulletin of Engineering Geology and the Environment. 2020; 79: 941-957. doi: 10.1007/s10064-019-01592-1
[68] Abdi MR, Ghalandarzadeh A, Shafiei Chafi L. Optimization of lime and fiber content for improvement of clays with different plasticity using response surface method (RSM). Transportation Geotechnics. 2022; 32: 100685. doi: 10.1016/j.trgeo.2021.100685
[69] Kamaruddin FA, Nahazanan H, Kim Huat B, Anggraini V. Improvement of marine clay soil using lime and alkaline activation stabilized with inclusion of treated coir fibre. Applied Sciences. 2020; 10(6): 2129. doi: 10.3390/app10062129
[70] Yao X, Chang S, Dong X. Three point bending flexural strength of cemented soil reinforced by PVA and Jute fiber. In IOP Conference Series: Earth and Environmental Science 2021 Mar 1; 692(3): 032056. doi: 10.1088/1755-1315/692/3/032056
[71] Yao X, Huang G, Wang M, Dong X. Mechanical properties and microstructure of PVA fiber reinforced cemented soil. KSCE Journal of Civil Engineering. 2021; 25(2): 482-491. doi: 10.1007/s12205-020-0998-x
[72] Wang Y, Ma B, Hua W, Wang W, Ma L, Wang B, Mei Z. Application of the FDEM Based on the CZM in Simulating Three-Point Bending Test of Frozen Soil. Atmosphere. 2022; 13(12): 2083. doi: 10.3390/atmos13122083
CAPTCHA Image