ارزیابی آزمایشگاهی عملکرد لرزه ای اتصاالت شمع به عرشه: مطالعه موردی سرشمع های متداول در ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه قم، قم، ایران

10.22091/cer.2025.12047.1592

چکیده

این تحقیق به بررسی رفتار لرزه‌ای و تحلیل آزمایشگاهی دو نوع رایج سرشمع‌های به‌کار رفته در اسکله های شمع و عرشه ایران پرداخته است. هدف از این مطالعه ارزیابی عملکرد مکانیکی و انرژی این سرشمع‌ها تحت بارگذاری‌های چرخه‌ای، به‌ویژه در نواحی اتصال شمع به عرشه، است. دو نمونه از سرشمع‌ها، شامل نمونه‌های PRC (میلگرد و بتن) و PEST (لوله فولادی خارجی)، تحت بارهای خمشی و برشی در آزمایشگاه مورد ارزیابی قرار گرفتند. نتایج نشان داد که نمونه PRC تحت بارگذاری‌های مشابه با تسلیم میلگردها و ترک‌خوردگی پوشش بتنی عرشه مواجه شد، در حالی که در نمونه PEST، شکست عمدتاً در ناحیه جوشکاری محل اتصال شمع به بولت عرشه مشاهده گردید. همچنین، در مقایسه با نمونه PRC، نمونه PEST از سختی بیشتری برخوردار بود که ناشی از استفاده از لوله‌های فولادی و گروت در ساختار آن بود. از سوی دیگر، ظرفیت جذب انرژی و میزان میرایی هیسترزیس در نمونه PRC به‌ویژه در دریفت‌های بالا بیشتر از نمونه PEST بود. نکته ی حایز اهمیت دیگر در این تحقیق وقوع مفاصل پلاستیک و خرابی ها در تیرهای عرشه می باشد که این مسئله نیازمند بازنگری در طراحی و یا نوع اتصال به جهت استفاده از این نوع اتصالات در اسکله هاست. این نتایج به‌طور مستقیم بر طراحی و عملکرد سازه‌های بندری تحت بارهای لرزه‌ای تأثیرگذار است. نتایج تحقیق می‌تواند به بهبود طراحی اتصالات شمع به عرشه و ارتقای عملکرد سازه‌ها در برابر بارهای لرزه‌ای کمک کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental Evaluation of Seismic Performance of Pile-to-Deck Connections: A Case Study of Common Pile Caps in Iran

نویسندگان [English]

  • Rouhollah Pourmirza
  • Rouhollah Amirabadi
  • Mahdi Sharifi
Department of Civil Engineering, Faculty of Engineering, University of Qom, Qom, Iran
چکیده [English]

This study investigates the seismic behavior and experimental analysis of two common types of pile caps used in infrastructure projects for port construction in Iran. The objective of this research is to evaluate the mechanical and energy performance of these pile caps under cyclic loading, particularly in the pile-to-deck connection regions. Two pile cap samples, namely PRC and PEST, were subjected to bending and shear loads in laboratory conditions. The results revealed that the PRC sample experienced reinforcement yielding and concrete cover cracking under similar loading conditions, whereas the PEST sample failed primarily at the welding joint between the pile and deck bolt connection. Additionally, compared to the PRC sample, the PEST sample exhibited higher stiffness, attributed to the use of steel pipes and grout in its construction. On the other hand, the energy absorption capacity and hysteretic damping in the PRC sample were higher, especially at higher drifts, than in the PEST sample. These findings have direct implications for the design and performance of port structures under seismic loads. The results of this study can contribute to improving the design of pile-to-deck connections and enhancing the performance of structures against seismic forces.

کلیدواژه‌ها [English]

  • Pile Cap
  • Cyclic Loading
  • Seismic Behavior
  • Pile-to-Deck Connections
[1] Li C, Wang Q, Zhu R, Zhu Y, Hu Y. Damage identification for pile foundation in high-piled wharf using composite energy factors driven by dynamic response under wave impact excitation. Ocean Engineering. 2024. doi:10.1016/j.oceaneng.2023.116286
[2] Zhu RH, Wang QM, Zheng JH, Zeng HK, Zhang JB, Hu Y, et al. Damage detection of foundation pile in high-pile wharf based on statistical high-order moment of dynamic response under regular wave excitation. Ocean Engineering. 2023. doi:10.1016/j.oceaneng.2023.115180
[3] Huang D, Wang S, Liu Z. A systematic review of prediction methods for emergency management. International Journal of Disaster Risk Reduction. 2021. doi: 10.1016/j.ijdrr.2021.102412
[4] Babaei S, Amirabadi R. Assessing seismic response equivalency for fixed pile-founded offshore platforms utilizing PSDA and IDA. Structures. 2022. doi: 10.1016/j.istruc.2022.09.053
[5] Shokrzadeh MR, Nateghi-Alahi F. Evaluation of hybrid NSM-CFRP technical bars and FRP sheets for seismic rehabilitation of a concrete bridge pier. Bridge Structures. 2022;18:75–88. doi: 10.3233/BRS-290180
[6] Shokrzadeh MR, Sharifi M, Nateghi Alahe F. Seismic retrofitting of concrete beam-column connections: Numerical study FRP strip and NSM technique. Journal of Seismology and Earthquake Engineering. 2024. doi: 10.48303/JSEE.2024.2031006.1099
[7] Babaei S, Amirabadi R, Taghikhany T, Sharifi M. Optimal ground motion intensity measure selection for probabilistic seismic demand modeling of fixed pile-founded offshore platforms. Ocean Engineering. 2021. doi: 10.1016/j.oceaneng.2021.110116
[8] Omrani Z, Amirabadi R, Sharifi M. Effect of uncertainty on the seismic behaviour of fixed pile-founded offshore platforms. Ships and Offshore Structures. 2023. doi: 10.1080/17445302.2022.2109353
[9] Lin L, Wang FC. Analytical behavior of concrete-filled steel tubular pile used in coastal wharf structure subjected to combined loads. Ocean Engineering. 2024; 308: 118388. doi: 10.1016/J.OCEANENG.2024.118388
[10] Dehghani A, Aslani F. A review on defects in steel offshore structures and developed strengthening techniques. Structures. 2019; 20: 635–57. doi: 10.1016/J.ISTRUC.2019.06.002
[11] Roeder CW, Graff R, Soderstrom J, Yoo JH. Seismic performance of pile-wharf connections. Journal of Structural Engineering. 2005. doi: 10.1061/(asce)0733-9445(2005)131:3(428)
[12] Restrepo JI, Yin P, Jaradat OA, Weismair M. Performance of new pile-deck connections under earthquakes. Ports 2007: 30 Years of Sharing Ideas 1977-2007; Proceedings of the Eleventh Triennial International Conference. 2007. doi: 10.1061/40834(238)104
[13] Lehman D, Roeder C. A new pile-deck connection for seismic performance enhancement of marginal wharves. American Concrete Institute, ACI Special Publication. 2012. doi: 10.14359/51686347
[14] Lehman DE, Roeder C, Stringer SJ, Jellin A. Seismic performance of improved pile-to-wharf deck connections. PCI Journal. 2013. doi: 10.15554/pcij.06012013.62.80
[15] Foltz RR, LaFave JM, Lee D. Seismic performance of a structural concrete pile-wharf connection before and after retrofit. Structures. 2022. doi: 10.1016/j.istruc.2022.02.042
[16] Soltani M, Amirabadi R. Seismic vulnerability assessment of pile-supported wharves using fragility surfaces. Journal of Earthquake Engineering. 2022. doi: 10.1080/13632469.2021.1961926
[17] Takahashi A, Takemura J. Liquefaction-induced large displacement of pile-supported wharf. Soil Dynamics and Earthquake Engineering. 2005. doi: 10.1016/j.soildyn.2005.04.010
[18] Khosravifar A, Elgamal A, Lu J, Li J. A 3D model for earthquake-induced liquefaction triggering and post-liquefaction response. Soil Dynamics and Earthquake Engineering. 2018; 110: 43–52. doi: 10.1016/J.SOILDYN.2018.04.008
[19] Heidary-Torkamani H, Bargi K, Amirabadi R, McCllough NJ. Fragility estimation and sensitivity analysis of an idealized pile-supported wharf with batter piles. Soil Dynamics and Earthquake Engineering. 2014; 61–62: 92–106. doi: 10.1016/J.SOILDYN.2014.01.024
[20] Yang CSW, DesRoches R, Rix GJ. Numerical fragility analysis of vertical-pile-supported wharves in the Western United States. Journal of Earthquake Engineering. 2012; 16: 579–94. doi: 10.1080/13632469.2011.641063
[21] Su L, Wan HP, Dong Y, Frangopol DM, Ling XZ. Seismic fragility assessment of large-scale pile-supported wharf structures considering soil-pile interaction. Engineering Structures. 2019; 186: 270–81. doi: 10.1016/J.ENGSTRUCT.2019.02.022
[22] Lobedan FR, LaBasco T, Ogunfunmi K. Wharf embankment and strengthening program at the Port of Oakland. Soil Dynamics and Earthquake Engineering 2002. doi: 10.1016/S0267-7261(02)00138-0
[23] Banayan-Kermani A, Bargi K, Heidary-Torkamani H. Seismic performance assessment of pile-supported wharves retrofitted by carbon fibre–reinforced polymer composite considering ageing effect. 2016;19:581–98. doi: 10.1177/1369433216630187
[24] Foltz RR, LaFave JM, Lee D. Seismic performance of a structural concrete pile-wharf connection before and after retrofit. Structures. 2022;38:874–94. doi: 10.1016/j.istruc.2022.02.042
[25] Zheng Y, Zhang R. Experimental study on the damage characteristic and assessment of transverse bent frame of high-piled wharf under impact load. Developments in the Built Environment. 2023; 14: 100124. doi: 10.1016/j.dibe.2023.100124
[26] Omrani Z, Amirabadi R, Sharifi M. Pile length optimization in fixed template offshore platform using risk reduction approach. International Journal of Coastal, Offshore and Environmental Engineering. 2021;6:33–43. doi: 10.22034/IJCOE.2021.150789 
[27] ASTM International. ASTM A370 Standard Test Methods and Definitions for Mechanical Testing of Steel Products. ASTM International. 2020.
[28] BS 1881-121. Testing Concrete - Part 121: Method for determination of the compressive strength of concrete cores. 1983.
[29] Industrial, Architecture Press of China B. GB/T 2419-2005, Test Method for Fluidity of Cement Mortar. 2005.
[30] ACI Committee 374.1. Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary: an ACI Standard. 2005. 
[31] Al-Salloum YA, Almusallam TH, Alsayed SH, Siddiqui NA. Seismic behavior of as-built, ACI-complying, and CFRP-repaired exterior RC beam-column joints. Journal of Composites for Construction. 2011. doi: 10.1061/(asce)cc.1943-5614.0000186
[32] Seismic Evaluation and Retrofit of Existing Buildings. 2017. doi: 10.1061/9780784414859
[33] Arockiasamy M, Arvan PA. Behavior, performance, and evaluation of prestressed concrete/steel pipe/steel H-pile to pile cap connections. Practice Periodical on Structural Design and Construction. 2022. doi: 10.1061/(asce)sc.1943-5576.0000671
[34] Wang JT, Sun Q, Li YW, Liu XH. Hysteretic performance of circular high-strength concrete-filled double skin steel tubular columns: Experiment. Marine Structures. 2024. doi: 10.1016/j.marstruc.2023.103519.   
CAPTCHA Image