توسعه‌ی یک دستگاه اختلاط عمیق خاک مقیاس آزمایشگاهی برای ارزیابی عوامل موثر بر مقاومت ستون‌های‌ دی.اس.ام

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی عمران، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران.

10.22091/cer.2025.12467.1606

چکیده

کاربردهای فرآوان روش اختلاط عمیق خاک، توجه بسیاری از محققان را به این شیوه‌ بهسازی زمین جلب نموده است. اگرچه آزمایش‌های بزرگ‌مقیاس میدانی به عنوان معتبرترین و قابل اعتمادترین روش بررسی خصوصیت‌های مقاومتی ستون‌های دی.اس.ام شناخته می‌شوند، ولی هزینه‌ زیاد و زمان‌بر بودن این آزمایش‌ها چالش‌‌برانگیز است. به منظور غلبه بر این مشکلات، برخی از پژوهشگران دستگاه‌های اختلاط عمیق خاک مقیاس آزمایشگاهی را در پژوهش‌های خود به‌کار گرفته‌اند. با این حال، اطلاعات محدودی در خصوص ساخت این دستگاه‌ها در دسترس است. ارتقای دانش طراحی و ساخت این دستگاه‌ها موجب رفع کاستی‌ دستگاه‌های قبلی، افزایش توانمندی دستگاه‌های آینده، بهینه‌سازی زمان و هزینه‌ ساخت، گسترش پژوهش‌های مرتبط با شیوه‌ اختلاط عمیق خاک و در نهایت افزایش آگاهی در خصوص این روش بهسازی زمین می‌شود. بر این اساس، در مطالعه‌ حاضر، ابتدا توسعه‌ یک دستگاه اختلاط عمیق خاک مقیاس آزمایشگاهی به طور کامل تشریح و سپس مقاومت فشاری دو گروه ستون دی.اس.ام با ابعاد و روش نصب یکسان که توسط دستگاه توسعه داده شده احداث گردیده بودند، مورد بررسی قرار گرفته است. دسته‌ اول ستون‌ها عیار و نسبت آب به سیمان یکسانی داشتند، ولی در گروه دوم این عوامل متفاوت بودند. تغییرپذیری پایین مقاومت و کیفیت خوب اختلاط گروه اول مؤید عملکرد خوب و دقت بالای دستگاه توسعه داده شده در اجرای ستون‌های دی.اس.ام بود. نتایج ارزیابی مقاومت نمونه‌های اخذ شده از دسته‌ دوم نشان داد که با کاهش نسبت آب به سیمان و افزایش عیار سیمان، مقاومت فشاری ستون‌ها افزایش یافته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Development of a Laboratory-Scale Deep Soil Mixing Device for Assessing the Influential Factors on Strength of DSM Columns

نویسندگان [English]

  • Mahdi Safdari Seh Gonbad
  • Mahmood Reza Abdi
Faculty of Civil Engineering, K.N. Toosi University of Technology, Tehran, Iran.
چکیده [English]

The wide range of applications of deep soil mixing has attracted the attention of many researchers to this ground improvement method. Although large-scale field tests are known as the most reliable method for investigating the strength characteristics of DSM columns, the high cost and time-consuming nature of these tests are challenging. To overcome these issues, some researchers have utilized laboratory-scale deep soil mixing devices. However, limited information is available on the design and construction of these apparatuses. Enhancing knowledge in the design and manufacture of this equipment will eliminate the weaknesses of previous devices, increase the capabilities of future apparatuses, optimize construction time and cost, expand studies related to the deep soil mixing method, and ultimately raise awareness of this ground improvement technique. Therefore, this study first fully describes the development of a laboratory-scale deep soil mixing device. Then, the compressive strength of two groups of small-scale DSM columns, both constructed using the developed device and having the same dimensions and installation method, was investigated. The first group had identical cement content and water/cement ratio, while these factors varied in the second group. The low strength variability and good mixing quality of the first group confirmed the performance and accuracy of the developed device for constructing DSM columns. Strength evaluation of the second group showed that by reducing the water/cement ratio and increasing the cement content, the compressive strength of the columns increased. 

کلیدواژه‌ها [English]

  • Ground Improvement
  • Deep Soil Mixing
  • DSM Device
  • DSM Column
  • Compressive Strength
[1] Abdi MR, Abbasi E, Safdari Seh Gonbad M. Performance comparison of polypropylene and elastic fibers in enhancing the flexural behavior of lime-stabilized kaolinite clay. Construction and Building Materials, 2025;141422. doi: 10.1016/j.conbuildmat.2025.141422
[2] Mahmoudi J, Pourhosseini R. The Study of the Effect of Drainage Conditions on the Collapse Potential of Soil. Civil Infrastructure Researches. 2024;10(1):109-24. doi: 10.22091/CER.2024.10063.1520
[3] Jafarzadeh F, Afzalsoltani S. Pile group behavior under unsymmetrical cyclic thermal loading in dry silty sand: 1g Physical modeling. Scientia Iranica, 2024. doi: 10.24200/sci.2024.61493.7345
[4] Ghassemi S, Ekraminia SS, Hajialilue-Bonab M, Tohidvand HR, Azarafza M, Derakhshani R. Innovative insights into micropile seismic response: Shaking table tests reveal critical dependencies and liquefaction mitigation. Bulletin of Engineering Geology and the Environment. 2025;84(4):1-25. doi: 10.1007/s10064-025-04225-y
[5] Kalantary F, Abbasi Govanjik D, Safdari Seh Gonbad M. Stimulation of native microorganisms for improving loose salty sand. Geomicrobiology Journal. 2019;36(6):533-42. doi: 10.1080/01490451.2019.1579876
[6] Abdi MR, Hajalilue Bonab M, Jalilzadeh Z. Impact of various binders on loess durability subjected to different freeze-thaw regimes. European Journal of Environmental and Civil Engineering. 2024;28(8):1924-42. doi: 10.1080/19648189.2023.2286470
[7] Kalantary F, Aghaalizadeh S, Ghanati F. Soil Stabilization Approach via Crude Plant Extracts. Transportation Infrastructure Geotechnology. 2025;12(1):1-9. doi: 10.1007/s40515-024-00463-x
[8] Abdi MR, Safdari Seh Gonbad M. Enhancement of soil–geogrid interactions in direct shear mode using attached elements as anchors. European Journal of Environmental and Civil Engineering. 2020;24(8):1161-79. doi: 10.1080/19648189.2018.1454861
[9] Abdi MR, Safdari Seh Gonbad M. Studying the effect of roughness on soil-geotextile interaction in direct shear test. Journal of Engineering Geology. 2018;12(5):1-30. doi: ‎ 10.18869/acadpub.jeg.12.5.1
[10] Abdi MR, Nakhaei P, Safdari Seh Gonbad M. Prediction of enhanced soil–anchored geogrid interactions in direct shear mode using gene expression programming. Geotechnical and Geological Engineering. 2021;39:957-72. doi: 10.1007/s10706-020-01537-6
[11] Abdi MR, Khakbazan A, Kazemi Abyaneh M, Safdari Seh Gonbad M. Assessment of relative density on shear strength and volumetric characteristics of sand-EPS particulate mixtures. Scientia Iranica. 2024. doi: 10.24200/SCI.2024.62072.7634
[12] Li P, Sun J, Ge X, Zhang M, Wang J. Parameters of dynamic compaction based on model test. Soil Dynamics and Earthquake Engineering. 2023;168:107853. doi: 10.1016/j.soildyn.2023.107853
[13] Jifang D, Shuaifeng W, Sen H, Yinqiu Z, Hong C, Yingqi W, Junwei S. Dynamic response and densification mechanism of dynamic compaction for silt soil through a large scale field test at Daxing Airport. Soil Dynamics and Earthquake Engineering. 2025;190:109201. doi: 10.1016/j.soildyn.2024.109201
[14] Jia F, Dong F, Ma S, Shen J, Liu Z. Vibratory compaction characteristics of the subgrade under cyclical loading based on finite element simulation. Construction and Building Materials. 2024;419:135378. doi: 10.1016/j.conbuildmat.2024.135378
[15] Lloret-Cabot M, Zhang K, Zhang W, Kourdey A, Hicks MA. Quantifying the effects of vibro-compaction on soil heterogeneity and geotechnical uncertainty. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards. 2025;1-21. doi: 10.1080/17499518.2025.2478636
[16] Nazariafshar J, Shayegh S, Ghanbari A, Shafiee A. A New Analytical Formula for Estimation the Bearing Capacity of Stone Column Group in Soft Soils. Arabian Journal for Science and Engineering. 2024:1-6. doi: 10.1007/s13369-024-09728-6
[17] Amirafshari S, Ghanbari A. A Geotechnical Centrifuge Study on the Bearing Capacity of Ring Foundations Reinforced by Stone Columns. International Journal of Geomechanics. 2025;25(1):04024321. doi: 10.1061/IJGNAI.GMENG-9948
[18] Bayesteh H, Sabermahani M. Field study on performance of jet grouting in low water content clay. Engineering Geology. 2020;264:105314. doi: 10.1016/j.enggeo.2019.105314
[19] Spagnoli G, Oreste P. Statistical Interpretation of Jet Grouting Field Data Regarding Its Strength and Stiffness. Geotechnical and Geological Engineering. 2025;43(1):44. doi: 10.1007/s10706-024-03008-8
[20] Safdari Seh Gonbad M, Abdi MR. Influence of mixing time and execution procedure on strength characteristics of improved sand using deep soil mixing (DSM) method. Construction and Building Materials. 2024;448:138115. doi: 10.1016/j.conbuildmat.2024.138115
[21] Nguyen TD, Phan TN, Likitlersuang S. Evaluating the Applicability of Large-Diameter Cement Deep Mixing Method for Soft Ground Improvement: A Landmark Case Study in Vietnam. International Journal of Geosynthetics and Ground Engineering. 2025;11(2):19. doi: 10.1007/s40891-025-00624-z
[22] Kempfert HG, Gebreselassie B. Excavations and foundations in soft soils. Germany: Springer; 2006. doi: 10.1007/3-540-32895-5
[23] FHWA-HRT-13-046. Design manual: Deep mixing for embankment and foundation support. US Department of Transportation, Federal Highway Administration, USA, 2013.
[24] Kitazume M, Terashi M. The deep mixing method. London: UK: CRC press; 2013. doi: 10.1201/b13873
[25] Han J. Principles and practice of ground improvement. USA: John Wiley & Sons; 2015.
[26] Kitazume M. Quality Control and Assurance of the Deep Mixing Method. UK: CRC Press; 2022. doi: 10.1201/9781003223054
[27] Moradi P, Dehghan Khalili H, Arvin MR. Deep Soil Mixing Columns as Settlement-Reducing Elements in Sandy Soils: A Numerical Study. International Journal of Geomechanics. 2023;23(4):04023015. doi: 10.1061/IJGNAI.GMENG-7983
[28] Mehdizadeh MJ, Dehghan Khalili H, Raisianzadeh J. Investigation of effectiveness of deep mixing method on seismic response of liquefiable soils using 3D numerical simulation. Numerical Methods in Civil Engineering, 2024;8(4):79-91. doi: 10.61186/NMCE.2406.1062
[29] Ramezani B, Dehghan Khalili H, Moradi P, Pourbagheri A. Seismic Resilience with Deep Soil Mixing: Numerical and Experimental Insights into Liquefaction Mitigation. Geotechnical and Geological Engineering. 2025;43(2):71. doi: 10.1007/s10706-024-03041-7
[30] Singh MJ, Yao K, Hou Y, Liu S, Yao Z, Borana L. Deep cement mixing columns for infrastructure development: a review of research progress, challenges, and future research directions. Geomechanics and Geoengineering. 2025;1-26. doi: 10.1080/17486025.2025.2477474
[31] Le Kouby A, Guimond-Barrett A, Reiffsteck P, Pantet A, Mosser JF, Calon N. Improvement of existing railway subgrade by deep mixing. European Journal of Environmental and Civil Engineering. 2018;24(8):1229-44. doi: 10.1080/19648189.2018.1456977
[32] Hessouh JJ, Eslami J, Beaucour AL, Noumowe A, Mathieu F, Gotteland P. Physical and mechanical characterization of deep soil mixing (DSM) materials: Laboratory vs construction site. Construction and Building Materials. 2023;368:130436. doi: 10.1016/j.conbuildmat.2023.130436
[33] Arjmand A, Eslami A. Appraisal of soil-cement columns load displacement behavior through full-scale tests database. Marine Georesources & Geotechnology. 2024;1-16. doi: 10.1080/1064119X.2024.2380530
[34] Alavi SM, Aghamolaei M, Shakeri Talarposhti S, Khodaei Ardabili AA, Salemi S. Efficiency Evaluation of Deep Soil Mixing Method in Stiff Clayey Soils: A Comprehensive Field Study. International Journal of Geomechanics. 2024;24(11):04024250. doi:10.1061/IJGNAI.GMENG-9893
[35] Eslami A, Arjmand A, Ardehe A, Ebrahimipour A, Nobahar M, Mo PQ. New approach for the numerical analysis of stiffened deep cement mixing columns and piles in coastal engineering through 1D elements. Ocean Engineering. 2024;313:119529. doi: 10.1016/j.oceaneng.2024.119529
[36] Al-Tabbaa A, Evans CW. Laboratory-scale soil mixing of a contaminated site. Proceedings of the Institution of Civil Engineers-Ground Improvement. 1999;3(3):119-34. doi: 10.1680/gi.1999.030303
[37] Chitambira B, Al-Tabbaa A, Evans CW. Laboratory and full-scale behaviour of soil-mixed columns. InGeoenvironmental Engineering: Geoenvironmental Impact Management: Proceedings of the third conference organized by the British Geotechnical Association and Cardiff School of Engineering, Cardiff University, and held in Edinburgh on 17–19 September 2001 (pp. 183-188). Thomas Telford Publishing.
[38] Hernandez-Martinez FG, Al-Tabbaa A. Laboratory strength correlations for cement-treated peat. InGeotechnical Engineering for Transportation Projects, Los Angeles, California, USA, 2004 (pp.1403-1411). doi: 10.1061/40744(154)130
[39] Castelbaum D, Olson MR, Sale TC, Shackelford CD. Laboratory apparatus and procedures for preparing test specimens of slurry mixed soils. Geotechnical Testing Journal. 2011;34(1):18-26. doi: 10.1520/GTJ102981
[40] Yi Y, Liska M, Akinyugha A, Unluer C, Al-Tabbaa A. Preliminary laboratory-scale model auger installation and testing of carbonated soil-MgO columns. Geotechnical Testing Journal. 2013;36(3):384-93. doi: 10.1520/GTJ20120052
[41] Esmaeili M, Gharouni-Nik M, Khajehei H. Evaluation of deep soil mixing efficiency in stabilizing loose sandy soils using laboratory tests. Geotechnical Testing Journal. 2014;37(5):817-27. doi: 10.1520/GTJ20130099
[42] Esmaeili M, Khajehei H. Mechanical behavior of embankments overlying on loose subgrade stabilized by deep mixed columns. Journal of Rock Mechanics and Geotechnical Engineering. 2016;8(5):651-9. doi: 10.1016/j.jrmge.2016.02.006
[43] Esmaeili M, Astaraki F, Khajehei H. Laboratory investigation on the effect of microsilica additive on mechanical properties of deep soil mixing columns in loose sandy soils. European Journal of Environmental and Civil Engineering. 2017;24(3):321-35. doi: 10.1080/19648189.2017.1382394
[44] Esmaeili M, Astaraki F, Yaghouti H, Movahedi Rad M. Laboratory investigation on the effect of microsilica additive on the mechanical behavior of deep soil mixing columns in saline dry sand. Periodica Polytechnica Civil Engineering. 2021;65(4):1080-91. doi: 10.3311/PPci.18126
[45] Frikha W, Zargayouna H, Boussetta S, Bouassida M. Experimental study of Tunis soft soil improved by deep mixing column. Geotechnical and Geological Engineering. 2017;35:931-47. doi: 10.1007/s10706-016-0151-2
[46] Sakr M, Nazir A, Azzam W, Aamer FA. Model study of deep soil mixing in loose sand. 15th international conference on structural and geotechnical engineering, Ain Shams University, Cairo, Egypt. 2019 (pp. 1-11). doi: 10.13140/RG.2.2.14054.68161
[47] Dehghan Khalili H, Ghalandarzadeh A, Moradi M, Karimzadeh R. Effect of distribution patterns of DSM columns on the efficiency of liquefaction mitigation. Scientia Iranica. 2020;27(5):2198-208. doi: 10.24200/SCI.2019.21647
[48] Sakr MA, Elsawwaf MA, Rabah AK. Soft clay improved by deep cement mixing column technique. Arabian Journal of Geosciences. 2022;15(15):1321. doi: 10.1007/s12517-022-10577-6
[49] Onur Mİ, Bıçakcı M, Kardoğan PS, Erdağ A, Aghlmand M. Laboratory model design for deep soil mixing method. Advances in Civil and Architectural Engineering. 2022;13(24):59-69. doi: 10.13167/2022.24.6
[50] Cao B, Xu J, Wang F, Al-Tabbaa A. Self-healing soil mix cut-off wall materials incorporating reactive magnesium oxide pellets. Géotechnique. 2023;74(12):1317-1328. doi: 10.1680/jgeot.21.00187
[51] Hammad MA, Mohamedzein Y, Al-Aghbari M. Improving the Properties of Saline Soil Using a Deep Soil Mixing Technique. CivilEng. 2023;4(4):1052-70. doi: 10.3390/civileng4040057
[52] Hammad MA, Mohamedzein YE, Al-Aghbari MY, Al-Nuaimi AS. Laboratory investigation of deep soil mixing for the improvement of salt-cemented soils. Geotechnical and Geological Engineering. 2024;42(8):7753-70. doi: 10.1007/s10706-024-02949-4
[53] Yenginar Y, Olgun M. Optimizing installation parameters of DM columns in clay using Taguchi method. Bulletin of Engineering Geology and the Environment. 2023;82(4):145. doi: 10.1007/s10064-023-03168-6
[54] Yenginar Y, Olgun M. Physical, mechanical, and microstructural characteristics of fly ash replaced cement deep mixing columns. Bulletin of Engineering Geology and the Environment. 2024;83(8):309. doi: 10.1007/s10064-024-03800-z
[55] Saride S, Mypati VN. Scale-Model Studies on Geopolymer Binder-Based Deep Mixing of Loose Sands to Improve Strength and Shear Modulus. Indian Geotechnical Journal. 2024;54(1):169-84. doi: 10.1007/s40098-023-00823-3
[56] Saride S, Mypati VN. Effect of area improvement ratio of geopolymer-based deep mixing columns on swell-shrink behavior of expansive soils. Construction and Building Materials. 2024;417:135163. doi: 10.1016/j.conbuildmat.2024.135163
[57] Kitazume M. Recent development and future perspectives of quality control and assurance for the deep mixing method. Applied Sciences. 2021;11(19):9155. doi: 10.3390/app11199155
[58] Kitazume M. Deep mixing technology–diversity and future development. Japanese Geotechnical Society Special Publication. 2024;11(2):1-6. doi: 10.3208/jgssp.vol11.kl-1
[59] Ge CW, Liu Z, Yu TX, Lan W, Yang NY, Zhao MY. Model test study of key factors of deep soil mixing mechanism using contra-rotational shear method. Rock and Soil Mechanics. 2024;45(1):68-67. doi: 10.16285/j.rsm.2023.5072
[60] Ge CW, Liu Z, Wen L, Ma X, Yang N, Lan W. Full-scale and model test study on CS-DSM technology. Japanese Geotechnical Society Special Publication. 2024;25;11(6):197-203. doi: 10.3208/jgssp.vol11.DS-2-06
[61] Liu Y, Jiang YJ, Xiao H, Lee FH. Determination of representative strength of deep cement-mixed clay from core strength data. Géotechnique. 2017;67(4):350-64. doi: 10.1680/jgeot.16.P.105
[62] Zuo J, Wang B, Li W, Han S, Wang J, Zhang F. Quality assessment and quality control of deep soil mixing columns based on a cement-content controlled method. Scientific Reports. 2023;13(1):4813. doi: 10.1038/s41598-023-31931-y
[63] Mahabub MS, Hasan MR, Khatti J, Hossain AS. Assessing the effects of influencing parameters on field strength of soft coastal soil stabilized by deep mixing method. Bulletin of Engineering Geology and the Environment. 2024;83(1):9. doi: 10.1007/s10064-023-03502-y
CAPTCHA Image