ارزیابی مکان یابی و مدیریت طرح توسعه در سکونتگاه های جدید در مناطق با خطر سیلاب: مطالعه موردی محدوده 560 هکتاری پردیسان قم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه قم، قم، ایران.

2 دانشکده برنامه‌ریزی و علوم محیطی، دانشگاه تبریز، تبریز، ایران.

3 دکتر جغرافیا و برنامه ریزی شهری، دانشگاه علوم و تحقیقات تهران

4 گروه پژوهشی شهرداری، قم، ایران

10.22091/cer.2025.11685.1586

چکیده

سطوح مخروط‌‌افکنه‌‌‌‌ای به‌دلیل حساس بودن به سیلاب، چالش‌‌های منحصر به فردی برای توسعه ایجاد می‌کند. محدوده پردیسان قم نیز در همین مناطق گسترش یافته و نیازمند مکان‌یابی و طرح توسعه است. برای این هدف، از یک روش جامع که شامل مدل‌سازی خطر سیل با HEC-RAS  است، استفاده شد و از روش SCS، دبی جریان یک رویداد سیل100 ساله محاسبه گردید. علاوه بر سیلاب، 13 معیار دیگر نیز طبق نظر کارشناسان برای ارزیابی تناسب زمین برای توسعه گنجانده‌‌ شد. این معیارها با استفاده از فرآیند تحلیل سلسله مراتبی (AHP) همراه با منطق فازی تجزیه و تحلیل شدند و مقایسه دقیق سایت‌های بالقوه برای گسترش را فراهم آورد. یافته‌ها نشان می‌دهد که علیرغم مدیریت آبخیزداری موجود، مناطق سکونتگاهی کنونی در پردیسان در برابر سیل آسیب‌پذیر بوده و به اندازه کافی چالش‌‌های حجم و رسوب ناشی از سیلاب‌‌های احتمالی را برطرف نمی‌‌کنند. این تحقیق، کاستی‌های اقدامات فعلی پیشگیری از سیل را برجسته و نیاز به استراتژی‌های بهبود یافته و مطالعات بیشتر را تأکید می‌کند. نتایج مدل FAHP، بخش جنوب شرقی پردیسان را به عنوان مناسب‌ترین منطقه برای توسعه شناسایی کرد که با طرح توسعه فعلی مغایرت دارد. این توصیه مبتنی بر ارزیابی کامل معیارهای مشخص شده است و به پتانسیل قابل توجهی برای گسترش هدفمند و بهینه شهری اشاره می‌‌کند. در نهایت، مشخص گردید که استفاده از مدل تلفیقی HECRAS-SCS-FAHP در توسعه مناطق شهری می‌تواند به عنوان یک نقشه راه مفید باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Location and Development Plan Management in New Settlements in Areas with Potential Flood Risk: A Case Study of the 560-Hectare Pardisan Site in Qom

نویسندگان [English]

  • Seyed Mohammad Hossein Dehnad 1
  • Abolfazl Faraji Mondared 2
  • Mohammad Aghazadeh 3 4
1 Department of Civil Engineering, Faculty of Engineering, University of Qom, Qom, Iran.
2 Faculty of Planning and Environmental Sciences, University of Tabriz, Tabriz, Iran.
3 Doctor of Geography and Urban Planning, Tehran University of Science and Research,|Municipal Research Department, Qom, Iran
4 Doctor of Geography and Urban Planning, Tehran University of Science and Research,|Municipal Research Department, Qom, Iran
چکیده [English]

Due to their susceptibility to flooding, alluvial fan surfaces present unique challenges for development. The scope of Pardisan is also expanded in these areas, necessitating a comprehensive location and development plan. To address this, a robust methodology was employed, incorporating flood risk modeling using HEC-RAS and the Soil Conservation Service (SCS) method to calculate the flow rate of a 100-year flood event. In addition to the flood factor, 13 other criteria were included based on expert opinions to assess the suitability of the land for development. These criteria were analyzed using the Analytical Hierarchy Process (AHP) in conjunction with fuzzy logic, facilitating an accurate comparison of potential sites for expansion. The findings reveal that, despite existing watershed management efforts, the current residential areas in Pardisan remain vulnerable to flooding and inadequately address the volume and sediment challenges posed by potential flood events. This research underscores the deficiencies in current flood prevention measures and highlights the necessity for enhanced strategies and further studies. The results of the Fuzzy Analytical Hierarchy Process (FAHP) model identified the southeastern part of Pardisan as the most suitable area for development, which contradicts the current development plan. This recommendation is based on a thorough evaluation of the specified criteria and indicates significant potential for targeted and optimal urban development. Finally, it is important to note that the integrated HEC-RAS-SCS-FAHP model can serve as a valuable roadmap for urban area development.

کلیدواژه‌ها [English]

  • HECRAS-SCS-FAHP integrated model
  • flood
  • development plan
  • 560-hectare Qom site
[1] Nkonu RS, Antwi M, Amo-Boateng M, Wullobayi Dekongmen B. GIS-based multi-criteria analytical hierarchy process modelling for urban flood vulnerability analysis, Accra Metropolis. Nat Hazards, 2023; 117(2): 1541-1568. doi: 10. 1007/ s11069- 023- 05915-0
[2] Dekongmen WB, Kabo-bah AT, Domfeh KM, Sunkari DE, Dile TY, Antwi OE, Anima Gyimah AR . Flood vulnerability assessment in the Accra Metropolis, southeastern Ghana. Appl Water Sci. 2021; 11(7): 1-10. doi: 10. 1007/ s13201- 021- 01463-9
[3] Zangiabadei A, Mohamadei G, Safaei H, Gaedrahmati S. Vulnerability indicators assessment of urban housing against the earthquake hazard case study: Isfahan housing. Geography and Development. 2008 Sep 22; 6(12): 61-79. doi: 10.22111/gdij.2008.1243 [In Persian]
[4] Boudaghpour S, Bagheri M, Bagheri Z. Estimation of flood environmental effects using flood zone mapping techniques in Halilrood Kerman, Iran. Arabian Journal for Science and Engineering. 2015 Mar; 40(3): 659-675. doi: 10.1007/s13369-014-1536-2 
[5] Javari M. Rainfall random variability and its effects on flood risk management in Iran. Modeling Earth Systems and Environment. 2022 Mar; 8(1): 1109-1133. doi: 10.1007/s40808-021-01130-7
[6] Rentschler J, Salhab M, Jafino BA. Flood exposure and poverty in 188 countries. Nature communications. 2022 Jun 28; 13(1): 3527. doi: 10.1038/s41467-022-30727-4
[7] da Silva LB, Alencar MH, de Almeida AT. A novel spatiotemporal multi-attribute method for assessing flood risks in urban spaces under climate change and demographic scenarios. Sustainable Cities and Society. 2022 Jan 1; 76: 103501. doi: 10. 1016/j. scs. 2021. 103501
[8] Goodarzi MR, Hoseini A. Numerical modeling of the flood routing and zoning by Saint-Venant in the river Bostanak. Civil Infrastructure Researches. 2019 Feb 20; 4(2): 17-31. doi: 10.22091/cer.2017.1611.1065 [In Persian]
[9] Wilby RL, Keenan R. Adapting to flood risk under climate change. Progress in physical geography. 2012 Jun; 36(3): 348-378. doi: 10.1177/0309133312438908
[10] Di Baldassarre G. Floods in a changing climate: inundation modelling. Cambridge University Press; 2012 Nov 22.
[11] Phyo AP, Yabar H, Richards D. Managing dam breach and flood inundation by HEC-RAS modeling and GIS mapping for disaster risk management. Case Studies in Chemical and Environmental Engineering. 2023 Dec 1; 8: 100487. doi: 10.1016/j.cscee.2023.100487
[12] Peker İB, Gülbaz S, Demir V, Orhan O, Beden N. Integration of HEC-RAS and HEC-HMS with GIS in flood modeling and flood hazard mapping. Sustainability. 2024 Feb 1; 16(3): 12-26. doi: 10.3390/su16031226 
[13] Khattak MS, Anwar F, Saeed TU, Sharif M, Sheraz K, Ahmed A. Floodplain mapping using HEC-RAS and ArcGIS: a case study of Kabul River. Arabian Journal for Science and Engineering. 2016 Apr; 41(4): 1375-1390. doi: 10.1007/s13369-015-1915-3
[14] Research Council of the National Academies N. Mapping the Zone: Improving Flood Map Accuracy. Disaster Prevention and Management: An International Journal. 2010 Apr 27; 19(2): 274-275. doi: 10.1108/dpm.2010.19.2.274.2 
[15] Yodying A, Seejata K, Chatsudarat S, Chidburee P, Mahavik N, Kongmuang C, Tantanee S. Flood hazard assessment using fuzzy analytic hierarchy process: A case study of Bang Rakam model in Thailand. InProceedings of the 40th Asian Conference on Remote Sensing, Daejeon Convention Center (DCC), Daejeon, KR. 2019 Oct; 14-18.
[16] Pour Ahmad A, Mehdi A, Mehdian Behnmiri M. Studying and investigating the process and physical-spatial expansion of Qom city using Shannon, Heldren and Gini entropy models. Journal of Geography (Regional Planning). 2016; 7(4): 59-76. [In Persian]
[17] Monfared AF, Ahmadi M, Derafshi K, Khodadadi M, Najafi E. Urban development assessment in flood hazard areas using integrated HEC-RAS, SCS, and FAHP models: a case study of Pardisan Settlement, Qom. Modeling Earth Systems and Environment. 2024 Aug; 10(4): 5103-5120. doi: 10.1007/s40808-024-02053-9 
[18] Baalousha HM, Younes A, Yassin MA, Fahs M. Comparison of the fuzzy analytic hierarchy process (F-AHP) and fuzzy logic for flood exposure risk assessment in arid regions. Hydrology. 2023 Jun 26; 10(7): 136. doi: 10.3390/hydrology10070136
[19] Souissi D, Souie A, Sebei A, Mahfoudhi R, Zghibi A, Zouhri L, Amiri W, Ghanmi M. Flood hazard mapping and assessment using fuzzy analytic hierarchy process and GIS techniques in Takelsa, Northeast Tunisia. Arabian Journal of Geosciences. 2022 Aug; 15(16): 1405. doi: 10.1007/s12517-022-10541-4
[20] Kumi-Boateng B, Peprah MS, Larbi EK. The integration of analytical hierarchy process (AHP), fuzzy analytical hierarchy process (FAHP), and Bayesian belief network (BBN) for flood prone areas identification-a case study of the Greater Accra Region, Ghana. J Geomat. 2020 Oct; 14(2): 100-122.
[21] Waananen AO. Flood-prone areas and land-use planning: selected examples from the San Francisco Bay region, California. US Government Printing Office; 1977, Issues 942-945.
[22] Wang JH, Lin GF, Huang YR, Huang IH, Chen CL. Application of hybrid machine learning model for flood hazard zoning assessments. Stochastic Environmental Research and Risk Assessment. 2023 Jan; 37(1): 395-412. doi: 10.1007/s00477-022-02301-3 
[23] Arnous MO, El-Rayes AE, El-Nady H, Helmy AM. Flash flooding hazard assessment, modeling, and management in the coastal zone of Ras Ghareb City, Gulf of Suez, Egypt. Journal of Coastal Conservation. 2022 Dec; 26(6): 77. doi: 10.1007/s11852-022-00916-w
[24] FEMA. Alluvial Fans: Hazards and Management. Federal Insurance Administration; Office of Loss Reduction. 1989.
[25] FEMA. Appendix 5: Studies of alluvial fan flooding. Guidelines and Specifications for Study Contractors. Doc. no. 37. Washington, D.C. 1995
[26] Safavi HM. Engineering Hydrology, Isfahan University Press, Second edition, Isfahan. 2018. [In Persian]
[27] Mahdavi M. Applied Hydrology, Volume 2, Second edition, Tehran University Press, Tehran. 2018. [In Persian]
[28] Reshma T, Kumar PS, Babu MR, Kumar KS. Simulation of runoff in watersheds using SCS-CN and Muskingum-Cunge methods using remote sensing and geographical information systems. International Journal of Advanced Science and Technology. 2010 Dec; 25(31): 01756–01752. 
[29] Mishra SK, Singh VP. Validity and extension of the SCS‐CN method for computing infiltration and rainfall‐excess rates. Hydrological processes. 2004 Dec 15; 18(17): 3323-3345. doi: 10.1002/hyp.1223. 
[30] Alizadeh A. Principles of applied hydrology, 34th edition, Astan gods Razavi Publishing House, Mashhad. 2013. [In Persian]
[31] Azizian A, Samadi A. Two-dimensional flood simulation in HEC-RAS-6 numerical environment, First edition, Imam Khomeini International University of Qazvin, Qazvin. 2016. [In Persian]
[32] Jha AK, Bloch R, Lamond J. Cities and flooding: a guide to integrated urban flood risk management for the 21st century. World Bank Publications; 2012 Feb 13.
[33] Al-Shalabi MA, Mansor SB, Ahmed NB, Shiriff R. GIS based multicriteria approaches to housing site suitability assessment. InXXIII FIG congress, shaping the change, Munich, Germany, October 2006 Oct 8; 8-13. 
[34] Ulengin B, Füsun U, Umit GA. Multidimensional approach to urban quality of life: the case of Istanbul. European Journal of Operational Research. 2001; 130(6): 361-374. doi: 10.1016/S0377-2217(00)00047-3
[35] Monfared AF, Raushi Sh, Mokhtari D. Investigating the physical development of the city on compact forms with an emphasis on floods (case study: Pardisan town of Qom). Doctoral Thesis, Tabriz University. 2023. [In Persian]
[36] Rajaee A. The application of geomorphology in land preparation and environmental management. Qom Publications, 4th edition, Tehran. 2012.
CAPTCHA Image