تاثیر غلظت NaOH و نسبت Na2SiO3/NaOH بر عملکرد بتن خودتراکم ژئوپلیمری حاوی اسکوریا

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی عمران، دانشکده مهندسی، دانشگاه گلستان، گرگان، ایران.

10.22091/cer.2025.11254.1570

چکیده

شناخت عوامل تأثیرگذار بر عملکرد بتن سبک خودتراکم ژئوپلیمری جهت بهره‌گیری از اثرات مثبت زیست محیطی و تکنیکی آن در پروژه‌های عمرانی ضرروی می‌باشد. در این مطالعه، تأثیر غلظت NaOH (6، 8 و M10) و نسبت Na2SiO3/NaOH (1.5، 0.5 و 2.5) بر عملکرد بتن خودتراکم ژئوپلیمری حاوی اسکوریا مورد بررسی قرار گرفته است. برای این منظور، 10 اختلاط بتن سبک خودتراکم ژئوپلیمری تحت آزمایشات جریان اسلامپ، T50، شاخص پایداری چشمی، زمان عبور از قیف Vشکل و حلقه J در حالت بتن تازه و همچنین مقاومت فشاری، مقاومت کششی و جذب آب در حالت سخت شده قرار گرفتند. بر طبق نتایج، اسکوریا به علت کاهش وزن مخلوط سبب کاهش میزان جریان اسلامپ و افزایش زمان‌های T50 و عبور از قیف Vشکل می‌گردد. همچنین غلظت NaOH و نسبت Na2SiO3/NaOH، با تغییر در ویسکوزیته مخلوط از عوامل تأثیرگذار برخصوصیات بتن سبک تازه خودتراکم ژئوپلیمری می‌باشند. ارزیابی ریزساختار نمونه‌ها با استفاده از عکس‌برداری SEM تأیید نمود که ناحیه اتصال سبک‌دانه- خمیر ژئوپلیمری قوی‌تر سبب بهبود خواص مکانیکی با افزایش غلظت NaOH از 6 به M10 گردیده است. همچنین نمونه‌های بتنی با نسبت Na2SiO3/NaOH برابر با 1.5 بهترین عملکرد را در افزایش خواص مکانیکی و کاهش جذب آب داشتند. در حالت کلی، با انتخاب میزان بهینه غلظت NaOH و Na2SiO3/NaOH، بتن خودتراکم ژئوپلیمری حاوی 100 درصد اسکوریا با خواص مطلوب بتن تازه و همچنین مقاومت فشاری در رده بتن سبک سازه‌ای قابل تولید می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of NaOH Concentration and Na2SiO3/NaOH Ratio on the Performance of Self-Compacted Geopolymer Concrete Containing Scoria

نویسندگان [English]

  • Amir Reza Shamsi
  • S. Yasin Mousavi
  • Ali Reza Tabarsa
Faculty of Engineering, Department of Civil Engineering, Golestan University, Gorgan, Iran.
چکیده [English]

Understanding the key variables that affect the performance of lightweight self-compacting geopolymer concrete (LSGPC) is essential for harnessing its technical and environmental benefits in real-world applications. This study aims to investigate the effect of NaOH concentration (6, 8 and 10M) and Na2SiO3/NaOH ratio (0.5, 1.5 and 2.5) on the performance of LSGPC containing scoria. For this purpose, 10 LSGPCs were produced and tested for slump flow, T50, visual stability index, V- funnel and J-ring in the fresh state and compressive strength, splitting tensile strength and water absorption in the hardened state. Results showed that using 100% scoria as a substitution of coarse aggregate reduces slump flow and increases T50 and V- funnel times due to the reduction in the weight of the mixture. Moreover, NaOH concentration and Na2SiO3/NaOH ratio with a change in the viscosity of the mixture are the factors influencing the fresh state performance of LSGPC. Microstructure observation of LSGPC samples by using SEM images revealed a stronger interfacial transition zone between the geopolymer paste and aggregate which improves the mechanical properties as the NaOH concentration increases from 6M to 10M. Furthermore, Na2SiO3/NaOH ratio of 1.5 in LSGPC mixture had the best performance in terms of increasing mechanical properties and reducing water absorption. In general, considering optimum concentration of NaOH and Na2SiO3/NaOH ratio, it is possible to produce LSGPC containing 100% scoria with acceptable fresh state properties as well as compressive strength categorized as lightweight structural concrete.

کلیدواژه‌ها [English]

  • Self-compacted Geopolymer Concrete
  • Scoria
  • Alkali-activators
  • Fresh concrete
  • Mechanical properties
[1] Ramezanianpour A, Esmaeili K, Ghahari S, Ramezanianpour A. Influence of initial steam curing and different types of mineral additives on mechanical and durability properties of self-compacting concrete. Construction and building materials. 2014; 73: 187-194. doi: 10.1016/j.conbuildmat.2014.09.072
[2] Ramezanianpour AA. Cement replacement materials, Properties, Durability, Sustainability. Berlin, Heidelberg: Springer; 2014.
[3] Reddy MS, Dinakar P, Rao BH. A review of the influence of source material’s oxide composition on the compressive strength of geopolymer concrete. Microporous and Mesoporous Materials. 2016; 234: 12-23. doi: 10.1016/j.micromeso.2016.07.005
[4] Kupaei RH, Alengaram UJ, Jumaat MZB, Nikraz H. Mix design for fly ash based oil palm shell geopolymer lightweight concrete. Construction and Building Materials. 2013; 43: 490-496. doi: 10.1016/j.conbuildmat.2013.02.071
[5] Posi P, Ridtirud C, Ekvong C, Chammanee D, Janthowong K, Chindaprasirt P. Properties of lightweight high calcium fly ash geopolymer concretes containing recycled packaging foam. Construction and Building Materials. 2015; 94: 408-413. doi: 10.1016/j.conbuildmat.2015.07.080
[6] Posi P, Teerachanwit C, Tanutong C, Limkamoltip S, Lertnimoolchai S, Sata V, Chindaprasirt P. Lightweight geopolymer concrete containing aggregate from recycle lightweight block. Materials & Design (1980-2015). 2013 Dec 1; 52: 580-586. doi: 10.1016/j.matdes.2013.06.001
[7] Mermerdaş K, Algın Z, Ekmen Ş. Experimental assessment and optimization of mix parameters of fly ash-based lightweight geopolymer mortar with respect to shrinkage and strength. Journal of Building Engineering. 2020; 31: 101351. doi: 10.1016/j.jobe.2020.101351
[8] Oleiwi SM, Algın Z, Nassani DE, Mermerdaş K. Multi-objective optimization of alkali activator agents for FA-and GGBFS-based geopolymer lightweight mortars. Arabian Journal for Science and Engineering. 2018; 43: 5333-5347. doi: 10.1007/s13369-018-3170-x
[9] Öztürk O. Engineering performance of reinforced lightweight geopolymer concrete beams produced by ambient curing. Structural Concrete. 2022; 23(4): 2076-2087. doi: 10.1002/suco.202000664
[10] Hema P, Revathi V. Durability evaluation of GGBS-RHA-based geopolymer concrete along with lightweight expanded clay aggregate using SEM images and EDAX analysis. Buildings. 2024; 14(11): 3355. doi: 10.3390/buildings14113355
[11] Abbas W, Khalil W, Nasser I. Production of lightweight Geopolymer concrete using artificial local lightweight aggregate. InMATEC Web of Conferences. 2018; 162: 02024. doi: 10.1051/matecconf/201816202024
[12] Kumar V, Kumar PJ. Self-compacted geopolymer concrete incorporating waste ceramic powder. Multiscale and Multidisciplinary Modeling, Experiments and Design. 2024; 7: 1-16. doi: 10.1007/s41939-024-00510-7
[13] Kumar NK, Reddy IR. A study on the effect of NaOH molarity on flyash based self compacting geopolymer concrete. Materials Today: Proceedings. 2023. doi: 10.1016/j.matpr.2023.03.144
[14] Ghafoor MT, Fujiyama C. Mix design process for sustainable self-compacting geopolymer concrete. Heliyon. 2023; 9(11). doi: 10.1016/j.heliyon.2023.e22206
[15] Saini G, Vattipalli U. Assessing properties of alkali activated GGBS based self-compacting geopolymer concrete using nano-silica. Case Studies in Construction Materials. 2020; 12: e00352. doi: 10.1016/j.cscm.2020.e00352
[16] Kanagaraj B, Anand N, Praveen B, Kandasami S, Lubloy E, Naser M. Physical characteristics and mechanical properties of a sustainable lightweight geopolymer based self-compacting concrete with expanded clay aggregates. Developments in the Built Environment. 2023; 13: 100115. doi: 10.1016/j.dibe.2022.100115
[17] Rahmanpour M, Afshin H. The combined retrofitting of reinforced light structural concrete beams in near joint by using of steel plates and CFRP jacket under cycling loads. Concrete Research. 2016; 9(1): 71-82. [In Persian]
[18] Khanzadi M, Chalekaee A. Property improvement of iranian LWAC: investigation of mechanical properties and stress-strain curve. Modares Civil Engineering journal. 2012; 12(4): 79-89. [In Persian]
[19] Kılıç A, Atiş CD, Yaşar E, Özcan F. High-strength lightweight concrete made with scoria aggregate containing mineral admixtures. Cement and Concrete Research. 2003; 33(10): 1595-1599. doi: 10.1016/S0008-8846(03)00131-5
[20] EFNARC, The European Guidelines for Self-Compacting Concrete. Specification, Production and Use. Switzerland, 2005.
[21] ACI 237R-07. Self-Consolidating Concrete. American Concrete Institute Farmington Hills, MI, USA; 2007.
[22] INSO 1608. Hardened Concrete- Part 3: Compressive Strength of Test Specimens- Test Method. Iranian National Standardization Organization; 2015.
[23] ASTM C496. Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. West Conshohocken, PA 19428-2959, United States.
[24] ASTM C642. Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. West Conshohocken, PA 19428-2959, United States.
[25] Diawara H. Parametric study of self-consolidating concrete, Doctor of Philosophy (PhD) Thesis, University of Nevada, Las Vegas, USA, 2008.
[26] Arun BR, Nagaraja PS, Srishaila JM. An effect of NaOH molarity on fly ash- Metakaolin-based self-compacting geopolymer concrete. InSustainable construction and building materials: Select Proceedings of ICSCBM. 2018 Dec 31; 233-244. doi: 10.1007/978-981-13-3317-0_21
[27] Kalyana Rama J, Reshmi N, Sivakumar M, Vasan A. Experimental investigation and numerical validation on the effect of NaOH concentration on GGBS based self-compacting geopolymer concrete. Advances in Structural Engineering: Materials. New Delhi: Springer; 2015. doi: 10.1007/978-81-322-2187-6_127
[28] Sathonsaowaphak A, Chindaprasirt P, Pimraksa K. Workability and strength of lignite bottom ash geopolymer mortar. Journal of Hazardous Materials. 2009; 168(1): 44-50. doi: 10.1016/j.jhazmat.2009.01.120
[29] Madandoust R, Ranjbar MM, Mousavi SY. An investigation on the fresh properties of self-compacted lightweight concrete containing expanded polystyrene. Construction and Building Materials. 2011; 25(9): 3721-3731. doi: 10.1016/j.conbuildmat.2011.04.018
[30] ACI 213R-03. Guide for structural lightweight‐aggregate concrete. ACI Committee 213. American Concrete Institute, Farmington Hills, MI, USA; 2003.
[31] Dolatabad YA, Kamgar R, Tazangi MAJ. Effects of perlite, leca, and scoria as lightweight aggregates on properties of fresh and hard self-compacting concretes. Journal of Advanced Concrete Technology. 2020; 18(10): 633-647. doi: 10.3151/jact.18.633
[32] Mohseni E, Kazemi MJ, Koushkbaghi M, Zehtab B, Behforouz B. Evaluation of mechanical and durability properties of fiber-reinforced lightweight geopolymer composites based on rice husk ash and nano-alumina. Construction and building materials. 2019; 209: 532-540. doi: 10.1016/j.conbuildmat.2019.03.067
[33] Shadnia R, Zhang L. Experimental study of geopolymer synthesized with class F fly ash and low-calcium slag. Journal of materials in civil engineering. 2017; 29(10): 04017195. doi: 10.1061/(ASCE)MT.1943-5533.0002065
[34] Khan KA, Raut A, Chandrudu CR, Sashidhar C. Design and development of sustainable geopolymer using industrial copper byproduct. Journal of Cleaner Production. 2021; 278: 123565. doi: 10.1016/j.jclepro.2020.123565
CAPTCHA Image