بررسی بهبود عملکرد شمع‌های اصطکاکی با پلیمر دو جزئی با آزمایش برش مستقیم

نوع مقاله : مقاله پژوهشی

نویسنده

گروه مهندسی عمران، واحد نجف‌آباد، دانشگاه آزاد اسلامی، نجف‌آباد، ایران.

چکیده

مقاومت برشی بسیج شده در اندرکنش بین مصالح مختلف همچون ماسه و فولاد، نقش مهمی در کاربردهای ژئوتکنیکی به‌خصوص در طراحی و عملکرد شمع‌های اصطکاکی دارد. در این مطالعه، یک رویکرد نوین از طریق تزریق پلیمر جهت بهبود مقاومت برشی بسیج شده بین شمع و خاک ارائه شده است. برای بررسی این ایده، مجموعه‌ای از آزمایش‌های برش مستقیم تحت سه تنش عمودی بر روی دو سطح صاف و زبر فولادی انجام شده است. پارامترهایی همچون مقدار پلیمر تزریق شده، زمان عمل‌آوری و زبری سطح فولاد بررسی شده است. نتایج آزمایش‌ها نشان می‌دهد که تزریق پلیمر باعث افزایش مهمی در مقاومت برشی بسیج شده در سطح مشترک ماسه و فولاد حتی با گذشت زمان کوتاهی در حدود یک ساعت بعد از تزریق شده است. افزایش مقدار پلیمر تزریق شده از مقدار صفر تا 20 درصد باعث افزایش غیرخطی مقاومت برشی شده است. مقدار افزایش چسبندگی به‌دلیل تزریق پلیمر بیشتر از افزایش زاویه اصطکاک بوده است که به‌دلیل وجود لایه چسبنده ایجاد شده بعد از تزریق پلیمر در مرز مشترک ماسه و فولاد بوده است. نتایج آزمایش‌ها افزایش چشمگیر مقاومت برشی در سطح صاف بعد از تزریق را نسبت به سطح زبر نشان می‌دهد. از طرف دیگر، نتایج آزمایش‌ها در زمان‌های متفاوت عمل‌آوری نشان می‌دهد که با گذشت بیشتر زمان، مقدار مقاومت برشی بسیج شده نیز افزایش یافته است. عکس‌های میکروسکوپی از ناحیه تزریق شده در ماسه، نشان‌دهنده پیوند ایجاد شده بین دانه‌ها به‌وسیله پلیمر است که در نهایت موجب بهسازی خاک محل تزریق شده است. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of Performance Improvement of Friction Piles with Two-Component Polymer Using Direct Shear Test

نویسنده [English]

  • Meysam Bayat
Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
چکیده [English]

Mobilized shear strength in the interaction between various materials such as sand and steel plays a crucial role in geotechnical applications, particularly in the design and performance of friction piles. This study presents an innovative approach through polymer injection to enhance the mobilized shear strength between the pile and soil. To investigate this idea, a series of direct shear tests were conducted under three values of vertical stresses on both smooth and rough surfaces. Parameters such as the amount of inject-ed polymer, curing time, and the roughness of the steel surface were examined. The test results indicate that polymer injection significantly increases the mobilized shear strength at the sand- steel interface, even after a short period of about one-hour post-injection. An increase in the amount of injected polymer from 0% to 20% resulted in a nonlinear increase in shear strength. The test results show a remarkable increase in shear strength on smooth surfaces after injection compared to rough surfaces. Additionally, with more time, the mobilized shear strength also increased. Microscopic images of the injected area in the sand demonstrate the bonds formed between the grains by the polymer, which ultimately improves the injected soil.

کلیدواژه‌ها [English]

  • Pile
  • Interface
  • Sand
  • Direct Shear Test
  • Polymer
[1] Heidarli E, Ouria A. Laboratory Study of the Effect of Cement Stabilization of the Interface of Reinforcement and Sand on the Interface Shear Strength. Civil Infrastructure Researches 2023; 9: 77-89. doi: 10.22091/cer.2022.8359.1415 [In Persian]
[2] Bayat M, Khosravian Homami A, Mousivand M. Shear strength and wind erosion potential of biologically improved sand. Geomicrobiology Journal. 2021 Jul 1; 38(7): 631-638. doi: 10.1080/01490451.2021.1917733
[3] Salehi M, Bayat M, Saadat M, Nasri M. Experimental study on mechanical properties of cement-stabilized soil blended with crushed stone waste. KSCE Journal of Civil Engineering. 2021 Jun; 25(6): 1974-1984. doi: 10.1007/s12205-021-0953-5
[4] Rezaei-Hosseinabadi MJ, Bayat M, Nadi B, Rahimi A. Sustainable utilisation of steel slag as granular column for ground improvement in geotechnical projects. Case Studies in Construction Materials. 2022 Dec 1; 17: e01333. doi: 10.1016/j.cscm.2022.e01333
[5] Mohammad Alinejad R, Bayat M, Nadi B, Pakbaz MS. Response of pile group adjacent to a slope crest under static axial loading. Arabian Journal of Geosciences. 2021 Dec; 14: 1-12. doi: 10.1007/s12517-021-09123-7
[6] Alinejad RM, Bayat M, Nadi B, Pakbaz MS. Experimental Study of Axially Loaded Pile Group Near a Sloping Ground. Periodica Polytechnica Civil Engineering. 2023 Mar 28; 67(2): 382-391. doi: 10.3311/PPci.18334
[7] Song C, Hong S, Ding Z, Qiu J. The influences of vertical load on lateral dynamic responses of end-bearing friction pile. Soil Dynamics and Earthquake Engineering. 2024 Feb 1; 177: 108387. doi: 10.1016/j.soildyn.2023.108387
[8] Oetomo J, Sulaiman A, Fadhillah RA, Astuti ED. Effect of Permanent Load in Gresik Alluvium on Friction Pile Embedment Depth. Indonesian Geotechnical Journal. 2023 Dec 30; 2(3): 147-158. doi: 10.56144/igj.v2i3.54 
[9] Janipour AK, Mousivand M, Bayat M. Study of interface shear strength between sand and concrete. Arabian Journal of Geosciences. 2022 Jan; 15(2): 172. doi: 10.1007/s12517-021-09394-0
[10] Liu X, Wang L, El Naggar MH, Wu W, Liu H, Li L, Wang K, Mei G, Xiao L. Dynamic analysis of layered soil-pile interaction based on the nearly continuous model. Ocean Engineering. 2023 Jul 1; 279: 114457. doi: 10.1016/j.oceaneng.2023.114457
[11] Yan J, Kong L, Xiong C, Xu G. Damage analysis of shear mechanical behavior of pile–structural soil interface considering shear rate effect. Acta Geotechnica. 2023 Oct; 18(10): 5369-5383. doi: 10.1007/s11440-023-01912-6
[12] Liu KF, Feng WQ, Cai YH, Xu H, Wu PC. Physical model study of pile type effect on long-term settlement of geosynthetic-reinforced pile-supported embankment under traffic loading. Transportation Geotechnics. 2023 Jan 1; 38: 100923. doi: 10.1016/j.trgeo.2022.100923
[13] Zarrabi M, Eslami A. Behavior of piles under different installation effects by physical modeling. International Journal of Geomechanics. 2016 Oct 1; 16(5): 04016014. doi: 10.1061/(ASCE)GM.1943-5622.0000643
[14] Aghamolaei M, Saeedi Azizkandi A, Abolhasanpoor A, Hashemi S. Influence of soil–pile interface characteristics on the seismic response of single pile foundations: shaking table testing and numerical simulation. Acta Geotechnica. 2024 Jan; 19(1): 417-436. doi: 10.1007/s11440-023-01955-9
[15] De Gennaro V, Pande GN, Lerat P. Stability problems in soil-structure interfaces: Experimental observations and numerical study. International Journal of Geomechanics. 2002 Apr; 2(2): 175-203. doi: 10.1061/(ASCE)1532-3641(2002)2:2(175)
[16] Hu L, Pu J. Testing and modeling of soil-structure interface. Journal of geotechnical and geoenvironmental engineering. 2004 Aug; 130(8): 851-860. doi: 10.1061/(ASCE)1090-0241(2004)130:8(851)
[17] Noroozi AG, Ajalloeian R, Bayat M. Effect of FTC on the interface between soil materials and asphalt concrete using a direct shear test. Case Studies in Construction Materials. 2022 Dec 1; 17: e01632. doi: 10.1016/j.cscm.2022.e01632
[18] Noroozi AG, Ajalloeian R, Bayat M. Experimental study of the role of interface element in earth dams with asphalt concrete core-Case study: Mijran dam. Case Studies in Construction Materials. 2022 Jun 1; 16: e01004. doi: 10.1016/j.cscm.2022.e01004
[19] Ghaffari J, Fazeli S. Experimental Investigation of Stress Relaxation Behavior in Sand and Sand-Geotextile Interface. Civil Infrastructure Researches. 2024 May 21; 10(1): 187-198. doi: 10.22091/cer.2024.9284.1507 [In Persian]
[20] Peng SY, Ng CW, Zheng G. The dilatant behaviour of sand–pile interface subjected to loading and stress relief. Acta Geotechnica. 2014 Jun;9(3):425-37. doi: 10.1007/s11440-013-0216-9
[21] Yue H, Zhuang P, Zhang H, Song X. Failure and deformation mechanisms of vertical plate anchors subjected to lateral loading in sand. International Journal of Geomechanics. 2020 Nov 1; 20(11): 04020210. doi: 10.1061/(ASCE)GM.1943-5622.0001859
[22] Randolph MF. Science and empiricism in pile foundation design. Géotechnique. 2003 Dec; 53(10): 847-875. doi: 10.1680/geot.2003.53.10.847
[23] Saberi M, Annan CD, Konrad JM, Lashkari A. A critical state two-surface plasticity model for gravelly soil-structure interfaces under monotonic and cyclic loading. Computers and Geotechnics. 2016 Dec 1; 80: 71-82. doi: 10.1016/j.compgeo.2016.06.011
[24] Maghsoodi S, Cuisinier O, Masrouri F. Thermal effects on mechanical behaviour of soil–structure interface. Canadian geotechnical journal. 2020; 57(1): 32-47. doi: 10.1139/cgj-2018-0583
[25] De Gennaro V, Pande GN, Lerat P. Stability problems in soil-structure interfaces: Experimental observations and numerical study. International Journal of Geomechanics. 2002 Apr; 2(2): 175-203. doi: 10.1061/(ASCE)1532-3641(2002)2:2(175)
[26] Cao S, Wang Q, Ma J, Xiao Z, Li C, Yang Y, Wang J. Experimental Investigation of Vertical Bearing Characteristics of Composite Post-grouting Piles in Sandy Soil. International Journal of Civil Engineering. 2024 Feb; 22(2): 303-315. doi: 10.1007/s40999-023-00899-1
[27] Li H, Meng Z, Shen S. Effects of interface morphology on the shear mechanical properties of sand–concrete interfaces. Materials. 2023 Sep 8; 16(18): 6122. doi: 10.3390/ma16186122
[28] Feng X, Zhang Y, Yuan X, Zhang P. An experimental study on frictional properties of concrete pipe–soil interface. Journal of Pipeline Systems Engineering and Practice. 2022 May 1; 13(2): 04022004. doi: 10.1061/(ASCE)PS.1949-1204.0000638
[29] Zheng J, He H, Alimohammadi H. Three-dimensional Wadell roundness for particle angularity characterization of granular soils. Acta Geotechnica. 2021 Jan;16:133-49. doi: 10.1007/s11440-020-01004-9
[30] Isaev ON, Sharafutdinov RF. Soil Shear Strength at the Structure Interface. Soil Mechanics & Foundation Engineering. 2020 May 1; 57(2): 139-147. doi: 10.1007/s11204-020-09649-0
[31] Samanta M, Punetha P, Sharma M. Influence of surface texture on sand–steel interface strength response. Géotechnique Letters. 2018 Mar; 8(1): 40-48. doi: 10.1680/jgele.17.00135
[32] Han F, Ganju E, Salgado R, Prezzi M. Effects of interface roughness, particle geometry, and gradation on the sand–steel interface friction angle. Journal of Geotechnical and Geoenvironmental Engineering. 2018 Dec 1; 144(12): 04018096. doi: 10.1061/(ASCE)GT.1943-5606.0001990
[33] DeJong JT, Westgate ZJ. Role of initial state, material properties, and confinement condition on local and global soil-structure interface behavior. Journal of Geotechnical and Geoenvironmental Engineering. 2009 Nov; 135(11): 1646-1660. doi: 10.1061/(ASCE)1090-0241(2009)135:11(1646)
[34] Su LJ, Zhou WH, Chen WB, Jie X. Effects of relative roughness and mean particle size on the shear strength of sand-steel interface. Measurement. 2018 Jul 1; 122: 339-346. doi: 10.1016/j.measurement.2018.03.003 
[35] Kou HL, Diao WZ, Zhang WC, Zheng JB, Ni P, Bo-An JA, Wu C. Experimental study of interface shearing between calcareous sand and steel plate considering surface roughness and particle size. Applied Ocean Research. 2021 Feb 1; 107: 102490. doi: 10.1016/j.apor.2020.102490
[36] Uesugi M, Kishida H. Frictional resistance at yield between dry sand and mild steel. Soils and foundations. 1986 Dec 1; 26(4): 139-149. doi: 10.3208/sandf1972.26.4_139
[37] Youn H, Tonon F. Numerical analysis on post-grouted drilled shafts: A case study at the Brazo River Bridge, TX. Computers and Geotechnics. 2010 Jun 1; 37(4): 456-465. doi: 10.1016/j.compgeo.2010.01.005
[38] Tan Y, Lu Y, Peng F, Liao S. Post-Grouting of Long Bored Piles in Clay. InGrouting 2017. 2017; 338-347. doi: 10.1061/9780784480786.033
[39] Zheng AR. Post-grouting bored pile technology. InIOP conference series: earth and environmental science 2017 Apr 1; 61(1): 012057. doi: 10.1088/1755-1315/61/1/012057
[40] Tsuji M, Kobayashi S, Mikake S, Sato T, Matsui H. Post-grouting experiences for reducing groundwater inflow at 500 m depth of the Mizunami Underground Research Laboratory, Japan. Procedia engineering. 2017 Jan 1; 191: 543-550. doi: 10.1016/j.proeng.2017.05.216
[41] Dai G, Gong W, Zhao X, Zhou X. Static testing of pile-base post-grouting piles of the Suramadu bridge. Geotechnical Testing Journal. 2011 Jan 1; 34(1): 34-49. doi: 10.1520/GTJ102926
[42] Thiyyakkandi S, McVay M, Bloomquist D, Lai P. Experimental study, numerical modeling of and axial prediction approach to base grouted drilled shafts in cohesionless soils. Acta Geotechnica. 2014 Jun; 9: 439-454. doi: 10.1007/s11440-013-0246-3
[43] Li Y, Cheng L, Lei W, Su Y, Huang T, Zhu Y, Mei C, He X. Microstructures and mechanical property of post-fire grouting sleeve connections considering concrete cover. Construction and Building Materials. 2023 Nov 3; 403: 132578. doi: 10.1016/j.conbuildmat.2023.132578
[44] Soltani-Jigheh H, Bagheri M, Amani-Ghadim AR. Use of hydrophilic polymeric stabilizer to improve strength and durability of fine-grained soils. Cold Regions Science and Technology. 2019 Jan 1; 157: 187-195. doi: 10.1016/j.coldregions.2018.10.011
[45] Ghasemi M, Bayat M, Ghasemi M. Experimental study on mechanical behavior of Sand improved by polyurethane foam. Experimental Techniques. 2023 Dec; 47(6): 1201-1211. doi: 10.1007/s40799-023-00633-5
[46] Huang J, Kogbara RB, Hariharan N, Masad EA, Little DN. A state-of-the-art review of polymers used in soil stabilization. Construction and Building Materials. 2021 Oct 25; 305: 124685. doi: 10.1016/j.conbuildmat.2021.124685
[47] Suhailuddin SH, Aprajith K, Sanjay B, Shabeeruddin SH, Begum SS. Development and characterization of flame retardant property in flexible polyurethane foam. Materials Today: Proceedings. 2022 Jan 1; 59: 819-826. doi: 10.1016/j.matpr.2022.01.115
[48] Li P, Shi M, Xia Y, Xue B, Zhang C, Chen J, Wang J, Pan Y, Wang C, Han B. Study on bonding performance and load transfer model between polyurethane anchor bolts and silty soil. Construction and Building Materials. 2023 Jun 27; 384: 131335. doi: 10.1016/j.conbuildmat.2023.131335
[49] Shahidi S, Bayat M, Zareei SA. Enhancing Mechanical Behavior of Silica and Calcareous Sand through Polyurethane Foam, Nanomaterial, and Fiber. Indian Geotechnical Journal. 2024 May 9:1-20. doi: 10.1007/s40098-024-00971-0
[50] Xiao Y, Stuedlein AW, Chen Q, Liu H, Liu P. Stress-strain-strength response and ductility of gravels improved by polyurethane foam adhesive. Journal of Geotechnical and Geoenvironmental Engineering. 2018 Feb 1; 144(2): 04017108. doi: 10.1061/(ASCE)GT.1943-5606.0001812
[51] Al-Atroush ME, Sebaey TA. Stabilization of expansive soil using hydrophobic polyurethane foam: A review. Transportation Geotechnics. 2021 Mar 1; 27: 100494. doi: 10.1016/j.trgeo.2020.100494
[52] Tan P, Wang F, Guo C, Liu J, Lei Q, Liu Z. Performance evaluation and stabilization mechanism of red clay treated with polyurethane. Chemosphere. 2023 Nov 1; 340: 139864. doi: 10.1016/j.chemosphere.2023.139864
[53] Hao S, Yu Y, Song J, Liu J, Song Z, Che W, Huang T, Chen Z, Sun S. Study on direct shear strength properties of sand mixed with polyurethane prepolymer and sisal fiber. Environmental Earth Sciences. 2023 Oct; 82(19): 436. doi: 10.1007/s12665-023-11121-9
[54] Zang Y, Gong W, Liu B, Chen H. Effects of different segments in polyurethane on the performance of sand stabilization. Journal of Applied Polymer Science. 2019 Apr 20; 136(16): 47267. doi: 10.1002/app.47267
[55] Liu J, Chen Z, Kanungo DP, Song Z, Bai Y, Wang Y, Li D, Qian W. Topsoil reinforcement of sandy slope for preventing erosion using water-based polyurethane soil stabilizer. Engineering geology. 2019 Mar 26; 252: 125-135. doi: 10.1016/j.enggeo.2019.03.003
[56] Newman TG. Construction geological logging of the Thames Tideway Tunnel beneath central London: unearthing the ground truth. Quarterly Journal of Engineering Geology and Hydrogeology. 2022 Aug 8; 55(3): qjegh2021-154. doi: 10.1144/qjegh2021-154
[57] Ma Q, Chen JF, Xiao HL, Pan YT, Song ZN. Effect of polyurethane foam adhesive on the static mechanical properties of municipal solid waste incineration bottom ash (IBA). Construction and Building Materials. 2022 Mar 28; 325: 126460. doi: 10.1016/j.conbuildmat.2022.126460
[58] Yu XY, Yao XW, Zhu JH, Li GY. Coupling reinforcement of uranium tailings via Klebsiella-induced calcium carbonate precipitation and waterborne polyurethane. Construction and Building Materials. 2023 Oct 12; 400: 132641. doi: 10.1016/j.conbuildmat.2023.132641
[59] Tao G, Yuan J, Chen Q, Peng W, Yu R, Basack S. Chemical stabilization of calcareous sand by polyurethane foam adhesive. Construction and Building Materials. 2021 Aug 9; 295: 123609. doi: 10.1016/j.conbuildmat.2021.123609
[60] Bai Y, Liu J, Cui Y, Shi X, Song Z, Qi C. Mechanical behavior of polymer stabilized sand under different temperatures. Construction and Building Materials. 2021 Jul 5; 290: 123237. doi: 10.1016/j.conbuildmat.2021.123237
[61] Chen Q, Yu R, Li Y, Tao G, Nimbalkar S. Cyclic stress-strain characteristics of calcareous sand improved by polyurethane foam adhesive. Transportation Geotechnics. 2021 Nov 1; 31: 100640. doi: 10.1016/j.trgeo.2021.100640
[62] Chen Q, Yu R, Tao G, Zhang J, Nimbalkar S. Shear behavior of polyurethane foam adhesive improved calcareous sand under large-scale triaxial test. Marine Georesources & Geotechnology. 2021 Dec 2; 39(12): 1449-1458. doi: 10.1080/1064119X.2020.1849473
[63] Sidek N, Mohamed K, Mohd Jais IB, Abu Bakar IA. Polyurethane foams in soil stabilization: A compressibility effect. InInCIEC 2015: Proceedings of the International Civil and Infrastructure Engineering Conference. 2016; 369-377. doi: 10.1007/978-981-10-0155-0_33
[64] Wang C, Diao Y, Guo C, Wu H, Guan H, Qin L, Chu X, Du X. Experimental study on the mechanical behaviour of silty soil stabilized with polyurethane. Construction and Building Materials. 2024 Feb 16; 416: 135251. doi: 10.1016/j.conbuildmat.2024.135251
[65] Asgari MR, Baghebanzadeh Dezfuli A, Bayat M. Experimental study on stabilization of a low plasticity clayey soil with cement/lime. Arabian Journal of Geosciences. 2015 Mar; 8: 1439-1452. doi: 10.1007/s12517-013-1173-1
[66] Bayat MR, Asgari MR, Mousivand M. Effects of cement and lime treatment on geotechnical properties of a low plasticity clay. InInternational conference on civil engineering architecture & urban sustainable development. 2013.
 
CAPTCHA Image