ارزیابی عمر خستگی روسازی آسفالتی تحت اثر سرعت بار و فشار باد چرخ به روش عددی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران.

2 دانشکده مهندسی عمران، دانشگاه اصفهان، اصفهان، ایران.

چکیده

خرابی خستگی عبارت است از مجموعه‌ای از ترک‌های متصل به هم در رویه‌ بتن آسفالتی که تحت تکرار بارگذاری ترافیکی به‌وجود می‌آید. عوامل مختلفی سبب پیدایش این نوع از ترک‌ها می‌شود، از آن جمله می‌توان تکرار زیاد تنش‌ها و کرنش‌های کششی در تارهای تحتانی رویه‌ آسفالتی، ضخامت کم رویه و یا اتصال نامناسب لایه‌های آن، تغییرشکل بیش از حد لایه‌های روسازی در اثر بارگذاری، مقاومت کم خاک بستر و سرعت وسایل نقلیه عبوری را نام برد. در این تحقیق، پارامتر سرعت چرخ وسیله نقلیه و همچنین فشار باد لاستیک جهت بررسی عمر خستگی و محاسبه پارامتر تعداد تکرار مجاز عبور، مورد بررسی قرار گرفته است. از این‌رو، از نرم‌افزار آباکوس بهره گرفته شد. جهت شبیه‌سازی چرخ، تنها از نیروهای وارده بر سطح رویه آسفالت استفاده شد. همچنین جهت بررسی و آنالیز خستگی، کرنش افقی زیرلایه آسفالتی مورد بررسی قرار گرفت. جهت صحت‌سنجی نیز پاسخ‌های مدل با نتایج آزمایش میدانی پنسیلوانیا که در سال 1993 میلادی و توسط اداره بزرگراه‌ها‌ی فدرال آمریکا صورت گرفت، مقایسه گردید. نتایج نشان داد که با افزایش سرعت، مقادیر تنش، کرنش و جابه‌جایی کاهش پیدا می‌کند. تأثیر سرعت بر کرنش کششی طولی انتهای لایه آسفالتی در سرعت‌های پایین چشمگیرتر است و با افزایش سرعت از شیب نمودار تغییرات کرنش کاسته می‌شود، به این صورت که با افزایش سرعت از 32 کیلومتر بر ساعت به 56، تقریبا 37 درصد و تا سرعت 80 کیلومتر بر ساعت حدود 42 درصد کاهش کرنش مشاهده می‌گردد. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Fatigue Life of Asphalt Pavement under the Effect of Load Speed and Tire Inflation Pressure by Numerical Method

نویسندگان [English]

  • Alireza Shokouhi 1
  • Gholamali Shafabakhsh 1
  • Peyman Hassanzadeh 2
1 Department of Civil Engineering, Semnan University, Semnan, Iran.
2 Department of Civil Engineering, University of Isfahan, Isfahan, Iran.
چکیده [English]

Fatigue failure is a set of interconnected cracks in the asphalt concrete surface that occurs under repeated traffic loading. Various factors cause this type of cracks, including high repetition of tensile stresses and strains in the lower layers of the asphalt surface, low thickness of the surface or improper connection of its layers, excessive deformation of the pavement layers due to loading, low strength of the subgrade and the speed of passing vehicles.  In this research, the tire speed parameter of the vehicle has been investigated in order to evaluate the fatigue life and calculate the parameter of the number of repetitions allowed to pass. Therefore, ABAQUS software was used and only the forces acting on the surface of the asphalt were used to simulate the tire. Also, in order to investigate and analyze the fatigue, the horizontal strain of the asphalt substrate was investigated. In order to check the accuracy, the answers of the model were compared with the results of the Pennsylvania field test that was conducted in 1993 by the US Federal Highway Administration. The results showed that with increasing speed, the values of stress, strain and displacement decrease. The effect of speed on the longitudinal tensile strain at the end of the asphalt layer is more significant at low speeds and the slope of the strain changes graph decreases with increasing speed in such a way that by increasing the speed from 32 kilometers per hour to 56, approximately 37% and up to 80 kilometers per hour, approximately 42% reduction in strain is observed.

کلیدواژه‌ها [English]

  • Top-Down Crack
  • Variable Speed
  • Tire Inflation Pressure
  • Fatigue Life
  • Finite Element Method
[1] Vice department of Highways. Road and building Maintenance department. The Status of Arterial Roads in the Country in 1393. 2014. [In Persian]
[2] Keymanesh M. Pavement Engineering. Iran: Noavar Publishing. 2016. [In Persian]
[3] Rezaei A. Studying the Stress Intensity Factor in Asphalt Pavement's Cracks by Finite Element. MSc Thesis, Babol Noshirvani University of Technology. 2013. [In Persian]
[4] Huang Y. Pavement Analysis and Design. 2nd ed. USA: University of Kentucky: Pearson Publishing Inc; 2004.
[5] Wang L. Mechanics of Asphalt: Microstructure and Micromechanics. USA: McGraw-Hill Publishing; 2010.
[6] Ameri M, Mansourian A, Heidary Khavas M, Aliha M, Ayatollahi MR. Cracked Asphalt Pavement Under Traffic Loading- A 3D finite element analysis. Engineering Fracture Mechanics. 2011; 78(8): 1817-1826. doi: 10.1016/j.engfracmech.2010.12.013 [In Persian]
[7] Zhao J, Wang H. Mechanistic-Empirical Analysis of Asphalt Pavement Fatigue Cracking Under Vehicular Dynamic Loads. Construction and Building Materials. 2021; 284: 122877. doi: 10.1016/j.conbuildmat.2021.122877
[8] Sun L, Duan Y. Dynamic Response of Top-Down Cracked Asphalt Concrete Pavement Under a Half-Sinusoidal Impact Load. Acta Mechanica. 2013; 224(8): 1865-1877. doi: 10.1007/s00707-013-0849-7
[9] Zhao Y, Ni F, Zhou L. Viscoelastic Response of Reflective Cracking under Dynamic Vehicle Loading in Asphalt Concrete Pavements. ICCTP. 2011; 3278-3297. doi: 10.1061/41186(421)326
[10] Keymanesh M, Mirshekarian M, Shafipoor A. Analytical Evaluation of the Effect of Axle Weight of Different Vehicles on Asphalt Pavement Damage Using the Finite Element Method. The 10th Congress of Civil Engineering; Faculty of Civil Engineering, Tabriz. 2015. [In Persian]
[11] Taherkhani H, Jalali M.  Determination of the Visco-Elastic Properties of Asphaltic Mixtures for Finite Element Modeling In ABAQUS. Road Magazine. 2016: 219-236. [In Persian]
[12] Shafabakhsh Gh, TalebSafa M. Analytical Evaluation of the Impact of Non-Uniform Stress Distribution and Wheel Wind Pressure on Asphalt Pavement Analysis. 8th National Congress of Civil Engineering; Babol Noshirvani University of Technology. 2014. [In Persian]
[13] Fakhri M, KarimiAbiyaneh P. Investigating the Propagation of Fatigue Cracks in Asphalt Pavement Due to Temperature Change, Using the Hypothesis of Fracture Mechanics. Journal of Transportation Infrastructure Engineering. 2014; 55-62. doi: 10.22075/jtie.2014.164 [In Persian]
[14] Keymanesh M, PirhadiTavandashti A, Mirshekarian M, Jafarian A. Sensitivity Analysis of The Effect of Vehicle Speed on The Failures of Flexible Pavements Using Abaqus Finite Element Software. International Conference on New Research Achievements in Civil Engineering, Architecture and Urban Planning; Nikan Institute of Higher Education. Tehran. 2015. [In Persian]
[15] Casey DB, Airey GD, Grenfell JR. A Comparison of Uniform and 3D Tyre Contact Pressure Representations Using a Finite Element Method. Transportation Research Procedia. 2016; 14: 2402-2410. doi: 10.1016/j.trpro.2016.05.280
[16] Beskou ND, Tsinopoulos SV, Hatzigeorgiou GD. Fatigue Cracking Failure Criterion for Flexible Pavements under Moving Vehicles. Soil Dynamics and Earthquake Engineering. 2016; 90: 476-479. doi: 10.1016/j.soildyn.2016.09.019
[17] Najafi F, Malakouti Olouunabadi M, Soroush M, Fazeli A. Investigation on Influence of Temperature and Moving Load Speed on Flexible Pavement Response with Viscoelastic Behavior using 3D Finite Element Model. Quarterly Journal of Transportation Engineering. 2020 Jun 21; 11(4): 971-987. doi: 10.22119/jte.2020.88168
[18] Canestrari F, Ingrassia LP. A Review of Top-Down Cracking In Asphalt Pavements: Causes, Models, Experimental Tools and Future Challenges. Journal of Traffic and Transportation Engineering (English Edition). 2020; 7(5): 541-572. doi: 10.1016/j.jtte.2020.08.002
[19] Sivaprakash G, Karna A, Rayudu Y, Jillella B. Fatigue Life Analysis of Bituminous Pavement for Different Material Properties and Axle Configurations. Materials Today: Proceedings. 2022; 68: 2355-2361. doi: 10.1016/j.matpr.2022.09.102
[20] Sudarsanan N, Kim YR. A Critical Review of the Fatigue Life Prediction of Asphalt Mixtures and Pavements. Journal of Traffic and Transportation Engineering (English Edition). 2022; 9(5): 808-835. doi: 10.1016/j.jtte.2022.05.003
[21] Ataee M,  Khabiri MM, GhafoiFard Z. Numerical Study of Surface Discontinuity Characteristics in the Performance of Flexible Cracked Pavement Due to Dynamic Load. Quarterly Journal of Transportation Engineering. 2022 Aug 21; 8(1): 115-130. doi: 10.22091/cer.2022.7706.1341
[22] Xia X, Han D, Zhao Y, Xie Y, Zhou Z, Wang J. Investigation of Asphalt Pavement Crack Propagation Based on Micromechanical Finite Element: A Case Study. Case Studies in Construction Materials. 2023; 19: e02247. doi: 10.1016/j.cscm.2023.e02247
[23] Ye Y, Li G, Zhuang C, Zhao S, Guo H. Study on Fatigue Damage Evolution and Model Prediction of Asphalt Pavement in The End-Stage of Service. Case Studies in Construction Materials. 2023; 19: e02377. doi: 10.1016/j.cscm.2023.e02377
[24] Al-Qadi I, Wang H. Tutumluer E. Dynamic Analysis of Thin Asphalt Pavements by Using Cross-Anisotropic Stress-Dependent Properties for Granular Layer. Transportation Research Record. Journal of the Transportation Research Board. 2023; 2154: 156-163. doi: 10.3141/2154-16
[25] de Araújo PC, Soares JB, de Holanda ÁS, Parente E, Evangelista F. Dynamic viscoelastic analysis of asphalt pavements using a finite element formulation. Road Materials and Pavement Design. 2010 Jan 1; 11(2): 409-433. doi: 10.1080/14680629.2010.9690282
[26] Luo H, Zhu H-p, Miao Y, Chen C-y. Simulation of Top-Down Crack Propagation in Asphalt Pavements. Journal of Zhejiang University SCIENCE A. 2010; 11(3): 223-230. doi: 10.1631/jzus.A0900248
[27] Sebaaly PE, Tabatabaee N, Kulakowski BT, Scullion T. Instrumentation for Flexible Pavements–Field Performance of Selected Sensors: Volume I. United States. Federal Highway Administration. Office of Engineering and Highway Operations R&D; 1992 Jun 1.
CAPTCHA Image