بررسی پارامتریک ظرفیت خمشی مقطع توخالی مدور آسیب‌دیده

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه محقق اردبیلی، اردبیل، ایران.

10.22091/cer.2024.11423.1578

چکیده

مقاطع توخالی مدور (CHS) جدار نازک فولادی به دلیل کاربرد گسترده در سازه‌های مختلف، در معرض بارهای مختلف و آسیب‌های گوناگون قرار دارند. تحقیقات پیشین عمدتا بر بررسی ظرفیت محوری این مقاطع متمرکز می‌باشد. این مقاله به بررسی ظرفیت خمشی مقطع CHS آسیب‌دیده و تأثیر عوامل مختلفی از جمله شدت آسیب، زاویه بارگذاری خمشی و لاغری جداره به روش عددی می‌پردازد. مدل‌سازی‌های تحقیق با استفاده از نرم‌افزار آباکوس و صحت‌سنجی نتایج با داده‌های تجربی قبلی انجام شده است. نتایج نشان می‌دهند که شدت آسیب و نسبت لاغری جداره دو پارامتر اصلی تأثیرگذار بر ظرفیت نهایی پوسته استوانه‌ای آسیب‌دیده می‌باشند. با افزایش این دو پارامتر، ظرفیت نهایی مقطع به طور قابل‌توجهی کاهش می‌یابد. برای عمق آسیب برابر با 20% قطر مقطع، مقدار کاهش ظرفیت خمشی از 20% برای مقطع با لاغری جداره 33.3 تا بیش از 36% برای مقطع با لاغری جداره 125 متغیر می‌باشد. آسیب وارده زمانی بیشترین تأثیر کاهنده خود را دارد که در وجه فشاری استوانه قرار گیرد. همچنین ملاحظه شد که طول عضو و محل آسیب در طول آن تأثیر ناچیزی بر ظرفیت خمشی نمونه‌ دارد. نهایتا رابطه‌ای برای برآورد کاهش مقاومت خمشی ناشی از بروز آسیب در این اعضا ارائه و با نتایج تحلیل‌های عددی مقایسه شده است. این رابطه برای مقطع CHS با لاغری جداره بین 33.3 تا 125، نسبت طول به قطر 4 تا 6، نسبت عمق آسیب صفر تا 0.2 و زاویه بارگذاری خمشی صفر تا 90 درجه قابل استفاده می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Parametric Study on the Bending Capacity of Dented Hollow Circular Section

نویسندگان [English]

  • Vahid Akrami
  • Nazanin Mazloumi
  • Hamed Rahman Shokrgozar
Department of Civil Engineering, Faculty of Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.
چکیده [English]

Thin-walled steel Circular Hollow Sections (CHS) are widely used in various structures and are subjected to different loads and various types of damages. Previous research has primarily focused on the axial capacity of these sections. This paper provides a numerical study on the bending capacity of damaged CHS sections and the effects of various factors, including damage severity, bending moment angle, and wall slenderness ratio. Modeling for this study was conducted using Abaqus software, and results were validated against previous experimental data. The findings indicate that damage severity and the wall slenderness ratio are the two main parameters affecting the ultimate capacity of the damaged CHS. As these parameters increase, the ultimate capacity of the section significantly decreases. For a damage depth equal to 20% of the section diameter, the reduction in bending capacity varies from 20% for a slenderness ratio of 33.3 to over 36% for a slenderness ratio of 125. This reduction maximizes when damage is located on the compressive face of the cylinder. It was also observed that the length of the member and the location of the damage along it have a negligible effect on the bending capacity. Finally, a relation is provided to estimate the reduction of bending strength due to damage, and is compared with numerical results. This relation is applicable for CHS section with wall-slenderness ratios between 33.3 and 125, length-to-diameter ratios of 4 to 6, damage depth ratios of 0 to 0.2, and bending moment angles of 0 to 90 degrees.

کلیدواژه‌ها [English]

  • Circular Hollow Sec-tions (CHS)
  • Bending Capacity
  • Damage Severity
  • Wall slenderness ratio
  • Finite Element Analysis
[1] Akrami V, Adili A, Shakeri K, Shahbazi N. An Investigation on the Cyclic Behavior of I-Shaped Beam to Circular Column Moment Connections with Channel Link. Civil Infrastructure Researches. 2023 Dec 22; 9(2): 141-161.doi: 10.22091/cer.2023.9497.1485 [In Persian]
[2] Jabbari E, Karami H, Molaiyfard M. Numerical investigation of the influence of a hole at the pier of the bridge on the flow characteristics of the pier. Civil Infrastructure Researches. 2017 Aug 23; 3(1): 17-29. doi: 10.22091/cer.2017.1930.1073 [In Persian]
[3] Dehghani E, Mousavi SO. Study of the modification factor of concrete bridges with Elastomeric Rubber Bearing (ERB) and Lead Rubber Bearing (LRB). Civil Infrastructure Researches. 2016 Aug 22; 2(1): 13-24. doi: 10.22091/cer.2015.750 [In Persian]
[4] Fang C, Wang F, Wang C, Zheng Y. Cyclic behavior of oval hollow section (OHS) beam-columns. Thin-Walled Structures. 2021 Apr 1; 161: 107430. doi: 10.1016/j.tws.2020.107430
[5] Cerik BC, Shin HK, Cho SR. A comparative study on damage assessment of tubular members subjected to mass impact. Marine Structures. 2016; 46: 1-29. doi: 10.1016/j.marstruc.2015.11.002
[6] Amirabadi R, Arbabi H, Arezoumand A, Saleh M. Evaluation of the Seismic Vulnerability of Piles and Metal Decks Due to the Aging of the Structure. Civil Infrastructure Researches. 2019 Feb 20; 4(2): 71-79. doi: 10.22091/cer.2019.3738.1135 [In Persian]
[7] Guo L, Yang S, Jiao H. Behavior of thin-walled circular hollow section tubes subjected to bending. Thin-Walled Structures. 2013; 73: 281-289. doi: 10.1016/j.tws.2013.08.014
[8] Alsalah A, Holloway D, Ghazijahani TG. Recovery of capacity lost due to openings in cylindrical shells under compression. Journal of Constructional Steel Research. 2017 Oct 1; 137: 169-179. doi: 10.1016/j.jcsr.2017.06.006
[9] Taghizadeh Valdi MH, Pourhadi Gavabari M. Analysis of Behavior of Spatial Structures in Bridges Deck With Changes in Diameter and Length of Members. Civil Infrastructure Researches. 2020 Aug 22; 6(1): 17-28. doi: 10.22091/cer.2020.5328.1197 [In Persian]
[10] Sharifi M, Moezi A, Sobati N. The Seismic Fragility Curve of Atmospheric Steel Storage Tanks on a Pile. Civil Infrastructure Researches. 2019 Aug 23; 5(1): 51-60. doi: 10.22091/cer.2019.3804.1136 [In Persian]
[11] Sobhan MS, Hosseini P. A Study of the Buckling Behavior of Aboveground Cylindrical Steel Tank under Seismic Loading. Civil Infrastructure Researches. 2022 Aug 23; 8(1): 21-34. doi: 10.22091/cer.2021.7560.1324 [In Persian]
[12] Kouhestani S, Sayyafzadeh B, Sharifi M. Seismic Vulnerability Assessment of Derrick-Supported Flare-Stacks Using Fragility Curves. Civil Infrastructure Researches. 2020 Aug 22; 6(1): 89-102. doi: 10.22091/cer.2021.6244.1218 [In Persian]
[13] Safari Honar F, Mohammadi Dehcheshmeh E, Broujerdian V, Torabi M. Nonlinear Dynamic Behavior of Three-Dimensional Moment Steel Frames and Dual System under Vehicle Impact. Civil Infrastructure Researches, 2022; 7(2): 21-31. doi: 10.22091/cer.2021.7270.1287 [In Persian]
[14] Cui G, Zhai X, Meng L. Behavior of axially loaded high-strength steel circular hollow section tubes under low velocity lateral impact. Thin-Walled Structures. 2023 Apr 1; 185: 110595. doi: 10.1016/j.tws.2023.110595
[15] Prabu B, Raviprakash AV, Venkatraman A. Parametric study on buckling behaviour of dented short carbon steel cylindrical shell subjected to uniform axial compression. Thin-Walled Structures. 2010; 48(8): 639-649. doi: 10.1016/j.tws.2010.02.009
[16] Ghazijahani TG, Jiao H, Holloway D. Plastic buckling of dented steel circular tubes under axial compression: An experimental study. Thin-Walled Structures. 2015; 92: 48-54. doi: 10.1016/j.tws.2015.02.018
[17] Vakili M, Showkati H. Experimental and numerical investigation of elephant foot buckling and retrofitting of cylindrical shells by FRP. Journal of Composites for Construction. 2016; 20(4): 04015087. doi: 10.1061/(ASCE)CC.1943-5614.0000640
[18] Stanković M, Ristić M, Simonović A, Jovanović M. Buckling Behaviour of Dented Aluminium Alloy Cylindrical Shell Subjected to Uniform Axial Compression. FME Transactions. 2017; 45(3): 441-447. doi: 10.5937/fmet1703441S
[19] Akrami V, Norouzi M, Teymour-Moghaddam S. A parametric study on the axial load carrying capacity of dented cylindrical columns. Modares Civil Engineering journal. 2021; 21(4): 19-33. [In Persian]
[20] Stasiewicz P. Analytical and experimental studies of stability of cylindrical shells with a cut-out. Mechanics and Mechanical Engineering. 2013; 17(2): 167-176.
[21] Lee CH, Chang KH, Park KT, Shin HS, Kim T. Bending resistance of girth-welded stainless steel circular hollow sections. Thin-Walled Structures. 2013; 73: 174-184. doi: 10.1016/j.tws.2013.08.002
[22] Jin S, Cheng P, Saneian M, Bai Y. Mechanical behavior of thin tubes under combined axial compression and bending. Thin-Walled Structures. 2021; 159: 107255. doi: 10.1016/j.tws.2020.107255
[23] Zhang J, Du J, Yuan H, Sun H. Plastic behavior of circular sandwich tubes considering the effect of local denting. Thin-Walled Structures. 2022 Jun 1; 175: 109268. doi: 10.1016/j.tws.2022.109268
[24] Cai J, Jiang X, Lodewijks G. Numerical investigation of residual ultimate strength of dented metallic pipes subjected to pure bending. Ships and Offshore Structures. 2018 Jul 4; 13(5): 519-531. doi: 10.1080/17445302.2018.1430200
[25] Houliara S, Karamanos SA. Buckling of Thin-Walled Long Steel Cylinders Subjected to Bending. Journal of pressure vessel technology. 2011; 133(1): 011201. doi: 10.1115/1.4002902
[26] Wang L, Tian X, Yang H. Load-Bearing Capacity of X80 Dented Pipelines under Typical Loads. Journal of Failure Analysis and Prevention. 2024 Feb; 24(1): 190-201. doi: 10.1007/s11668-023-01827-0
[27] Ahmadi M, Musavi MR. Effect of High-Strength Materials on Axial Capacity of CFT Columns. Civil Infrastructure Researches. 2021 Feb 19; 6(2): 49-66. doi: 10.22091/cer.2021.6837.1239 [In Persian]
[28] Pachideh G, Gholhaki M, Moshtagh A. An experimental study on cyclic performance of the geometrically prismatic concrete-filled double skin steel tubular (CFDST) columns. Iranian Journal of Science and Technology, Transactions of Civil Engineering. 2021; 45: 629-638. doi: 10.1007/s40996-020-00410-z
[29] Pachideh G, Gholhaki M, Moshtagh A. Impact of temperature rise on the seismic performance of concrete-filled double skin steel columns with prismatic geometry. Journal of Testing and Evaluation. 2021; 49(4): 2800-2815. doi: 10.1520/JTE20200037
[30] Shokrgozar H.R., Akrami V., Ma'af T.J., Shahbazi N. The effect of different retrofitting techniques on the axial load carrying capacity of damaged cylindrical shells. InStructures. 2021 Jun 1; 31: 590-601. doi: 10.1016/j.istruc.2021.01.048
[31] Pachideh G, Gholhaki M. Evaluation of concrete filled steel tube column confined with FRP. Journal of Testing and Evaluation. 2020; 48(6): 4343-4354. doi: 10.1520/JTE20180148
CAPTCHA Image