بررسی آزمایشگاهی عملکرد مهارهای دوصفحه‌ای بازشو با تغییرات مساحت و فاصله بین صفحات در خاک‌های ماسه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشکده مهندسی عمران و منابع زمین، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران.

2 گروه مهندسی عمران، دانشگاه آزاد اسلامی واحد تهران مرکزی، تهران، ایران

3 گروه مهندسی عمران، دانشکده مهندسی عمران و منابع زمین، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران

4 گروه مهندسی عمران، واحد شهر قدس، دانشگاه آزاد اسلامی، تهران، ایران

10.22091/cer.2024.10732.1550

چکیده

مهارها اعضایی کششی هستند که بااتصال به سازه و قرارگیری در عمق مناسب در زمین می‌توانند با ایجاد ایمنی در برابر نیروهای بیرون‌کشیدگی مقاومت کنند. انواع مختلفی از مهار‌ها برای پایدارسازی در مناطق دریایی و خشک معرفی‌ شده‌اند. این مطالعه به بررسی آزمایشگاهی مهارهای دوصفحه‌ای بازشونده در خاک می‌پردازد. با توجه به جدید بودن مهارهای صفحه‌ای بازشونده، این مطالعه به ارزیابی تأثیر عواملی همچون نحوه توزیع مساحت در صفحات مهار، سرعت بیرون‌کشش، فاصله بین صفحات و دانسیته نسبی خاک بر ظرفیت بیرون‌کشش نهایی پرداخته است. این ارزیابی با استفاده از مدل‌سازی فیزیکی بر روی مهارهای صفحه‌ای بازشو مدفون در بستر ماسه‌ای انجام‌ شده است. جهت تحلیل نحوه شکل‌گیری گوه‌های گسیختگی و بسیج‌شدگی حجم خاک قرارگرفته بر روی صفحات، از روش سرعت‌سنجی تصویری ذرات استفاده شد. نتایج نشان داد که با ثابت نگه‌داشتن مساحت صفحات و تنها با تغییر نحوه توزیع مساحت از حالت مهار دوصفحه‌ای با مساحت برابر به حالتی که مساحت بیشتری در صفحه پایینی توزیع ‌شده باشد، ظرفیت بیرون‌کشش مهار 1.5 برابر افزایش می‌یابد. همچنین، بررسی عملکرد مهار دوصفحه‌ای بازشو تحت سرعت‌های بیرون‌کشش مختلف نشان داد که سرعت بیرون‌کشش مهار در خاک‌های ماسه‌ای تأثیر اندکی بر ظرفیت بیرون‌کشش دارد. علاوه بر این، در بین سرعت‌های مورد بررسی، بیرون‌کشش مهارها با سرعت 10 و 30 میلیمتر بر دقیقه به ترتیب در خاک با دانسیته نسبی پایین و بالا موجب به دست آمدن بیشینه نیروی بیرون‌کشش مهار شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental Investigation of the Performance of Two-Plate Expandable Anchors with Variations in Area and Distance Between Plates in Sandy Soils

نویسندگان [English]

  • Shiva Abrifam 1
  • Amirali Zad 2
  • Maryam Yazdi 3
  • Javad Nazari Afshar 4
1 Department of Civil Engineering, Faculty of Shahr-e-Qods Branch, Islamic Azad University, Ghods Branch, Tehran, Iran
2 Department of Civil Engineering, Islamic Azad Uinversity, Central Tehran Branch, Tehran, Iran
3 Department of Civil Engineering, Faculty of Civil and Earth Resources Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
4 Department of Civil Engineering, Faculty of Shahr-e-Qods Branch, Islamic Azad University, Ghods Branch, Tehran, Iran
چکیده [English]

Anchors are tensile elements that resist external tensile forces by attaching to structures and being embedded at an optimal depth in the ground. Various types of anchors have been developed for stabilizing both offshore and onshore environments. This study focuses on the experimental examination of a novel type of mechanically expandable plate anchors capable of opening in soil. The impact of various factors including the division of the surface within the plates, pull-out speed, spacing between plates, and soil density on the ultimate pull-out capacity of expandable plate anchors embedded in a sand bed has been explored through physical modeling. To analyze the formation of rupture wedges and the mobilization of the soil volume resting on the plates, particle image velocimetry was employed. Findings indicate that maintaining the plate area constant and altering the area distribution from a scenario of equal-area two-plate anchors to one with greater area allocation on the lower plate enhances the anchor's pull-out capacity by 1.5 times. Furthermore, assessing the functionality of the expandable double-plate anchor across varying pull-out speeds reveals minimal influence of pull-out speed on the pull-out capacity in sandy soils. Among the examined speeds, pulling out the anchors at rates of 10 and 30 mm/min, respectively, in soils of low and high relative densities yielded the highest pull-out forces.

کلیدواژه‌ها [English]

  • Physical modelling
  • Expandable two-plate anchors
  • area distribution in plates
  • pull-out velocity
  • Particle image velocimetry (PIV)
[1] Das BM, Shukla SK. Earth anchors. J. Ross Publishing; 2013 May 22.
[2] Rahimi M, Tafreshi SM, Leshchinsky B, Dawson AR. Experimental and numerical investigation of the uplift capacity of plate anchors in geocell-reinforced sand. Geotextiles and Geomembranes. 2018 Dec 1; 46(6): 801-816. doi: 10.1016/j.geotexmem.2018.07.010
[3] Randolph M, Gourvenec S. Offshore geotechnical engineering. CRC press; 2017 Jul 12. doi: 10.1201/9781315272474 
[4] Dean ET. Offshore geotechnical engineering. 2009 Dec.
[5] Randolph M, Cassidy M, Gourvenec S, Erbrich C. Challenges of offshore geotechnical engineering. InProceedings of the 16th international conference on soil mechanics and geotechnical engineering. 2005; 123-176. doi: 10.3233/978-1-61499-656-9-123
[6] Ren M, Jiang T, Liu C, Zhang J, Wang L. Deformation characteristics of sandy soil around a plate anchor under lateral loading. Geofluids. 2022; 2022(1): 1117143. doi: 10.1155/2022/1117143
[7] Hu W, Lin Z, Wang H, Zhao P, Hao D, Gong J. Method for calculating the uplift capacity of a circular anchor plate at arbitrary depth in sand. Ocean Engineering. 2023 Oct 15; 286: 115441. doi: 10.1016/j.oceaneng.2023.115441
[8] Fanning J, Sivakumar V, Nanda S, Gavin K, Murray T, Bradshaw A, Black J, Jalilvand S. Pullout Capacity of Single and Biwing Anchors in a Soft Clay Deposit: Model Investigation in a Centrifuge and FEM Predictions. Journal of Geotechnical and Geoenvironmental Engineering. 2023 Jul 1; 149(7): 04023050. doi: 10.1061/JGGEFK.GTENG-10636
[9] Roy A, O'loughlin CD, Chow SH, Randolph MF. Inclined loading of horizontal plate anchors in sand. Géotechnique. 2022 Dec; 72(12): 1051-1067. doi: 10.1680/jgeot.20.P.119
[10] Zhang S, Wang Y, Li C, Li Q, Yang D. Microscopic Bearing Behavior of Horizontally Loaded Vertical Plate Anchors in Sandy Soil. Advances in Civil Engineering. 2022; 2022(1): 7371229. doi: 10.1155/2022/7371229
[11] Kumar J, Rahaman O. Vertical uplift resistance of horizontal plate anchors for eccentric and inclined loads. Canadian Geotechnical Journal. 2019; 56(2): 290-299. doi: 10.1139/cgj-2017-0515
[12] Soni VA, Parmar S. An Experimental Study on Uplift Capacity of Axisymmetric Plate Anchors in Well Graded Sand at Different Relative Density and Embedment Ratio. 2022. doi: 10.21203/rs.3.rs-1648256/v1
[13] Srinivasan V, Ghosh P. Large-scale testing and finite-element simulation of twin square anchor plates embedded at shallow depth in layered soil media. Sādhanā. 2020 Dec; 45: 1-5. doi: 10.1007/s12046-020-01483-2
[14] Gottardi G, Tonni L, editors. Cone Penetration Testing 2022: Abstracts Volume. CRC Press; 2022 Nov 11. 
[15] Cerfontaine B, White D, Kwa K, Gourvenec S, Knappett J, Brown M. Anchor geotechnics for floating offshore wind: Current technologies and future innovations. Ocean Engineering. 2023 Jul 1; 279: 114327. doi: 10.1016/j.oceaneng.2023.114327
[16] Giampa JR, Bradshaw AS, Gerkus H, Gilbert RB, Gavin KG, Sivakumar V. The effect of shape on the pull-out capacity of shallow plate anchors in sand. Géotechnique. 2019 Apr; 69(4): 355-363. doi: 10.1680/jgeot.17.P.269
[17] Roy A, Bhattacharya P. Diameter effect on uplift capacity of horizontal circular anchor embedded in sand. International Journal of Geotechnical Engineering. 2020 Oct 2. doi: 10.1080/19386362.2018.1534345
[18] Zhang X, Liu M, Jiang T. Experimental Study on Uplift Behavior of Two-Plate Horizontal Anchors in Sand. Geotechnical Testing Journal. 2023 Jul 1; 46(4): 599-613. doi: 10.1520/GTJ20220218
[19] Bao X, Wu H, Xiong H, Chen X. Particle shape effects on submarine landslides via CFD-DEM. Ocean Engineering. 2023 Sep 15; 284: 115140. doi: 10.1016/j.oceaneng.2023.115140
[20] Raaj SK, Saha N, Sundaravadivelu R. Foldable Torpedo Anchor: A Novel Anchoring System for Deepwater Floaters. InOCEANS 2022, Hampton Roads 2022 Oct 17; 1-4. doi: 10.1109/OCEANS47191.2022.9977315
[21] Ghosh A, Bera AK. Effect of geotextile ties on uplift capacity of anchors embedded in sand. Geotechnical and Geological Engineering. 2010 Sep; 28: 567-577. doi: 10.1007/s10706-010-9313-9
[22] Aliasgharzadeh M, Yousefzadehfard M, Atrchian M, Bayat M. Experimental study on pullout capacity of geocell and geotextile-reinforced horizontal plate anchors embedded in granular soil. International Journal of Geosynthetics and Ground Engineering. 2023 Feb; 9(1): 6. doi: 10.1007/s40891-023-00428-z
[23] Choudhary AK, Pandit B, Babu GS. Uplift capacity of horizontal anchor plate in geocell reinforced sand. Geotextiles and Geomembranes. 2019 Apr 1; 47(2): 203-216. doi: 10.1016/j.geotexmem.2018.12.009
[24] Mukherjee S, Kumar L, Choudhary AK, Babu GS. Pullout resistance of inclined anchors embedded in geogrid reinforced sand. Geotextiles and Geomembranes. 2021 Oct 1; 49(5): 1368-1379. doi: 10.1016/j.geotexmem.2021.05.009
[25] Ryoo SC, Eruçar S, Evans TM, Aydilek AH. CFD-DEM modeling of filtration through conventional and conical geotextile filter systems. Geosynthetics International. 2022 Apr 20; 31(1): 3-17. doi: 10.1680/jgein.21.00098
[26] Merifield R, Smith C. The ultimate uplift capacity of multi-plate anchors in undrained clay. InSoil Behavior and Geo-Micromechanics. 2010; 74-79. doi: 10.1061/41101(374)12
[27] Merifield RS, Smith CC. The ultimate uplift capacity of multi-plate strip anchors in undrained clay. Computers and Geotechnics. 2010 Jun 1; 37(4): 504-514. doi: 10.1016/j.compgeo.2010.02.004
[28] Tilak BV, Samadhiya NK. Pullout capacity of multi-plate horizontal anchors in sand: an experimental study. Acta Geotechnica. 2021 Sep; 16: 2851-2875. doi: 10.1007/s11440-021-01173-1
[29] Misir G. Predicting the uplift capacity of vertically located two-plate anchors. Acta Geotechnica Slovenica. 2018 Jan 1; 15(2): 47-57. doi: 10.18690/actageotechslov.15.2.47-57.2018
[30] Cerfontaine B, White D, Kwa K, Gourvenec S, Knappett J, Brown M. Anchor geotechnics for floating offshore wind: Current technologies and future innovations. Ocean Engineering. 2023 Jul 1; 279: 114327. doi: 10.1016/j.oceaneng.2023.114327
[31] Li H, Yang M, Yin X. Study on safety assessment methods of gravity anchors based on a simplified mechanical model. Frontiers in Earth Science. 2023 May 9; 11: 1178622. doi: 10.3389/feart.2023.1178622
[32] Erbrich CT, Neubecker SR. Geotechnical design of a grillage and berm anchor. InOffshore Technology Conference. 1999 May 3; OTC-10993. doi: 10.4043/10993-MS
[33] Fleming K, Weltman A, Randolph M, Elson K. Piling engineering. CRC press; 2008 Sep 23. doi: 10.1201/b22272
[34] Jardine R, Chow F, Overy R, Standing J. ICP design methods for driven piles in sands and clays. London: Thomas Telford; 2005 Mar.
[35] Kay S, Gourvenec S, Palix E, Alderlieste E. Intermediate offshore foundations. CRC press; 2021 Jun 20. doi: 10.1201/9780429423840
[36] Buckley RM, Kontoe S, Jardine RJ, Barbosa P, Schroeder FC. Pile driveability in low-to medium-density chalk. Canadian Geotechnical Journal. 2021; 58(5): 650-665. doi: 10.1139/cgj-2019-0703
[37] Aubeny C. Geomechanics of marine anchors. CRC Press; 2017 Sep 18. doi: 10.4324/9781351237376
[38] Andersen KH, Murff JD, Randolph MF, Clukey EC, Erbrich CT, Jostad HP, Hansen B, Aubeny C, Sharma P, Supachawarote C. Suction anchors for deepwater applications. InProceedings of the 1st international symposium on frontiers in offshore geotechnics, ISFOG, Perth 2005 Sep 19; 3-30.
[39] Madsen S, Andersen LV, Ibsen LB. Numerical buckling analysis of large suction caissons for wind turbines on deep water. Engineering structures. 2013 Dec 1; 57: 443-452. doi: 10.1016/j.engstruct.2013.09.041
[40] Ehlers CJ, Young AG, Chen JH. Technology assessment of deepwater anchors. InOffshore technology conference. 2004 May 3; OTC-16840. doi: 10.4043/16840-MS
[41] Senders M, Randolph M, Gaudin C. Theory for the installation of suction caissons in sand overlaid by clay. InSUT Offshore Site Investigation and Geotechnics. 2007 Sep 11; SUT-OSIG.
[42] Stapelfeldt M, Bienen B, Grabe J. The influence of the drainage regime on the installation and the response to vertical cyclic loading of suction caissons in dense sand. Ocean engineering. 2020 Nov 1; 215: 107105. doi: 10.1016/j.oceaneng.2020.107105
[43] Wang D, Hu Y, Randolph MF. Keying of rectangular plate anchors in normally consolidated clays. Journal of Geotechnical and Geoenvironmental Engineering. 2011 Dec 1; 137(12): 1244-1253. doi: 10.1061/(ASCE)GT.1943-5606.0000477
[44] Gaudin C, O'loughlin CD, Randolph MF, Lowmass AC. Influence of the installation process on the performance of suction embedded plate anchors. Géotechnique. 2006 Aug; 56(6): 381-391. doi: 10.1680/geot.2006.56.6.381
[45] Song Z, Hu Y, O’Loughlin C, Randolph MF. Loss in anchor embedment during plate anchor keying in clay. Journal of Geotechnical and Geoenvironmental Engineering. 2009 Oct; 135(10): 1475-1485. doi: 10.1061/(ASCE)GT.1943-5606.0000098
[46] Lieng JT, Hove F, Tjelta TI. Deep penetrating anchor: Subseabed deepwater anchor concept for floaters and other installations. InISOPE International Ocean and Polar Engineering Conference. 1999 May 30; ISOPE-I.
[47] Lieng JT, Kavli A, Hove F, Tjelta TI. Deep penetrating anchor: further development, optimization and capacity verification. InISOPE International Ocean and Polar Engineering Conference. 2000 May 28; ISOPE-I.
[48] Medeiros Jr CJ. Low cost anchor system for flexible risers in deep waters. InOffshore technology conference. 2002 May 6; OTC-14151. doi: 10.4043/14151-MS
[49] Medeiros CJ. Torpedo anchor for deep water. InProceedings of the deepwater offshore technology conference, Rio de Janeiro 2001 Oct. doi: 10.4043/25422-MS
[50] Randolph MF, Gaudin C, Gourvenec SM, White DJ, Boylan N, Cassidy MJ. Recent advances in offshore geotechnics for deep water oil and gas developments. Ocean Engineering. 2011 May 1; 38(7): 818-834. doi: 10.1016/j.oceaneng.2010.10.021
[51] Cerfontaine B, Knappett JA, Brown MJ, Davidson CS, Al-Baghdadi T, Sharif YU, Brennan A, Augarde C, Coombs WM, Wang L, Blake A. A finite element approach for determining the full load–displacement relationship of axially loaded shallow screw anchors, incorporating installation effects. Canadian geotechnical journal. 2021; 58(4): 565-582. doi: 10.1139/cgj-2019-0548
[52] Hao D, Wang D, O’Loughlin CD, Gaudin C. Tensile monotonic capacity of helical anchors in sand: interaction between helices. Canadian Geotechnical Journal. 2019; 56(10): 1534-1543. doi: 10.1139/cgj-2018-0202
[53] Perko HA. Helical piles: a practical guide to design and installation. John Wiley & Sons; 2009 Oct 19.
[54] Spagnoli G, de Hollanda Cavalcanti Tsuha C. A review on the behavior of helical piles as a potential offshore foundation system. Marine Georesources & Geotechnology. 2020 Oct 20; 38(9): 1013-1036. doi: 10.1080/1064119X.2020.1729905
[55] Bradshaw AS, Cullen L, Miller Z. Field study of group effects on the pullout capacity of “deep” helical piles in sand. Canadian Geotechnical Journal. 2022; 59(4): 538-545. doi: 10.1139/cgj-2021-0072
[56] Al-Baghdadi TA, Brown MJ, Knappett JA, Al-Defae AH. Effects of vertical loading on lateral screw pile performance. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering. 2017 Jun; 170(3): 259-272. doi: 10.1680/jgeen.16.00114
[57] Cerfontaine B, Knappett J, Brown MJ, Davidson C, Sharif Y. Optimised design of screw anchors in tension in sand for renewable energy applications. Ocean Engineering. 2020 Dec 1; 217: 108010. doi: 10.1016/j.oceaneng.2020.108010
[58] Davidson C, Brown MJ, Cerfontaine B, Al-Baghdadi T, Knappett J, Brennan A, Augarde C, Coombs W, Wang L, Blake A, Richards D. Physical modelling to demonstrate the feasibility of screw piles for offshore jacket-supported wind energy structures. Géotechnique. 2022 Feb; 72(2): 108-126. doi: 10.1680/jgeot.18.P.311
[59] Sharif YU, Brown MJ, Cerfontaine B, Davidson C, Ciantia MO, Knappett JA, et al. Effects of screw pile installation on installation requirements and in-service performance using the discrete element method. Can Geotech J. 2021; 58(9): 1334-1350. doi: 10.1139/cgj-2020-0241
[60] Jalali Moghadam M, Dastaran N, Zad A. Introducing expandable mechanical plate anchors for onshore and offshore anchoring. Marine Georesources & Geotechnology. 2022 Mar 4; 40(3): 329-348. doi: 10.1080/1064119X.2021.1894274
[61] Mohammadkhanifard HR, Jalali Moghadam M, Zad A, Ramesht MH. Evaluating the behavior of expandable multi-plate mechanical anchors in granular soils. Marine Georesources & Geotechnology. 2022 Sep 21; 40(10): 1205-1223. doi: 10.1080/1064119X.2021.1980638
[62] Tilak BV, Samadhiya NK. Uplift capacities of triple-plate horizontal circular anchors in sand. InProceedings of the Indian Geotechnical Conference 2019: IGC-2019 Volume II 2021 May 4; 673-681. doi: 10.1007/978-981-33-6370-0_59
[63] Tilak VB, Samadhiya NK. Uplift capacities of double-plate square anchors at shallow depths in sand. In Indian geotechnical conference GeoNEst, IIT Guwahati, Guwahati, Assam, India. 2017; 1-4.
[64] Sabermahani M, Shojaee Nasirabadi M. Vertical uplift resistance of an innovative plate anchor embedded in sand. Marine Georesources & Geotechnology. 2021 Jun 25; 39(7): 842-858. doi: 10.1080/1064119X.2020.1773590
[65] White DJ, Take WA. Particle image velocimetry (PIV) software for use in geotechnical testing. University of Cambridge, Department of Engineering; 2002. doi: 10.7710/1093-7374.1624
[66] White DJ. An investigation into the behaviour of pressed-in piles (Doctoral dissertation, University of Cambridge).
[67] Das BM. Principles of geotechnical engineering. Cengage Learning; 2021. 
[68] Hossain MS, Kim Y, Wang D, editors. Physical and numerical modelling of installation and pull-out of dynamically penetrating anchors in clay and silt. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering. 2013. doi: 10.1115/OMAE2013-10322
[69] Lai Y, Zhu B, Chen C, Huang Y-H. Dynamic installation behaviors of a new hybrid plate anchor in layered marine clay. China Ocean Eng. 2021; 35(5): 736-749. doi: 10.1007/s13344-021-0065-5
[70] Andersen KH, Schjetne K. Database of friction angles of sand and consolidation characteristics of sand, silt, and clay. J Geotech Geoenviron Eng. 2013; 139(7): 1140-1155. doi: 10.1061/(ASCE)GT.1943-5606.000083
[71] Det Norske Veritas. Design and installation of plate anchors in clay. Oslo (Norway): Det Norske Veritas; 2017.
[72] Maitra S, White D, Chatterjee S, Choudhury D. Numerical modelling of seepage and tension beneath plate anchors. Comput Geotech. 2019; 108: 131-142. doi: 10.1016/j.compgeo.2018.12.022
[73] White D, Take W, Bolton M. Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Geotechnique. 2003; 53(7): 619-631. doi: 10.1680/geot.2003.53.7.619
[74] Cinicioglu O, Altunbas A, Soltanbeigi B, Gezgin A. Characterization of active failure wedge for cohesionless soils. 2015.
[75] Mnzool M. On the influence of dilation angle in soil slope stability analysis among other model parameters. Therm Sci. 2022; 26(1): 99-106. doi: 10.2298/TSCI22S1099
[76] Xu S, Cai J, Wang H. Analyses of dilatancy characteristics of cemented soils based on triaxial test and numerical simulation. InFrontiers of Civil Engineering and Disaster Prevention and Control Volume 2. 2023 Jan 16; 234-248. doi: 10.1201/9781003348436
[77] Szypcio Z. Relation between the friction angle of sand at triaxial compression and triaxial extension and plane strain conditions. Geosciences. 2020; 10(1): 29. doi: 10.3390/geosciences10010029
[78] Rhadilkar BS, Paradkar AK, Golait YS. Study of rupture surface and ultimate resistance of anchor foundations. Proceedings of the Fourth Asian Regional Conference; 1971.
[79] Emirler B, Tolun M, Laman M. Experimental investigation of the uplift capacity of group anchor plates embedded in sand. Geomech Eng. 2016; 11(5): 691-711. doi: 10.12989/gae.2016.11.5.691
[80] Giampa JR, Bradshaw AS, Schneider JA. Influence of dilation angle on drained shallow cir-cular anchor uplift capacity. Int J Geomech. 2017; 17(2): 04016056. doi: 10.1061/(ASCE)GM.1943-5622.0000725
[81] Tilak VB, Samadhiya NK. Pullout capacity of circular multi-plate inclined anchors in sand: An experimental study. Geotech Geol Eng. 2023; 41: 1-23. doi: 10.1007/s10706-023-02407-7
[82] Majer J. Zur berechnung von zugfundamenten. Osterreichische Bauzeitschrift. 1955; 10(5): 85-90.
[83] Baker WH, Konder RL. Pullout load capacity of a circular earth anchor buried in sand. Highway Res Rec. 1966; 108: 1-10.
[84] Balla A. The resistance to breaking-out of mushroom foundations for pylons. Proceedings of the 5th International Conference on Soil Mechanics and Foundation Engineering; 1961.
[85] Meyerhof G, Adams J. The ultimate uplift capacity of foundations. Can Geotech J. 1968; 5(4): 225-244. doi: 10.1139/t68-024
[86] Motamedinia H, Hataf N, Habibagahi G. A study on failure surface of helical anchors in sand by PIV/DIC technique. Int J Civil Eng. 2019; 17(12): 1813-1827. doi: 10.1007/s40999-018-0380-2
[87] Mohammadkhanifard HR, Jalali Moghadam M, Zad A, Ramesht MH. Evaluating the behavior of expandable multi-plate mechanical anchors in granular soils. Mar Georesour Geotechnol. 2021; 39: 1-19. doi: 10.1080/1064119X.2021.1980638
 
CAPTCHA Image