تبدیل موجک با کاهش اثرات لبه برای آسیب‌یابی در تیرهای تحت آسیب افزایشی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه سازه، دانشکده مهندسی عمران، دانشگاه تبریز، تبریز، ایران

10.22091/cer.2024.10087.1521

چکیده

در پژوهش حاضر از تبدیل موجک با کاهش اثرات لبه برای تشخیص، تعیین موقعیت و تخمین تغییر شدت آسیب در حالت آسیب افزایش‌یابنده در طول تیرهای فولادی با شرایط تکیه‌گاهی مختلف استفاده شده است. برای این منظور تیر فولادی با شرایط مرزی دو سر مفصل و دو سر گیردار با روش اجزای محدود مدلسازی شده و آسیب‌های افزایشی، در یک نقطه از طول تیر در سه سطح مختلف با ایجاد تغییر در سختی عضو تعریف گردید. سپس با اعمال تحریک دینامیکی ضربه بر تیر، پاسخ دینامیکی عضو به صورت جابجایی از نقاط مختلف در طول آن استخراج شده و با استفاده از تبدیل موجک پیوسته پردازش گردید. تولید ضرایب موجک بسیار بزرگ در نقاط تکیه‌گاهی، نتیجه ذاتی تبدیل موجک در نقاط مرزی است که اثرات لبه نامیده می‌شود. به منظور پیشگیری از تاثیر منفی اثرات لبه بر تفسیر نتایج، روش‌های مختلف برونیابی پاسخ به سمت خارج از بازه طول تیر مورد بررسی قرار گرفت. ضرایب موجک بدست آمده از پردازش پاسخ برونیابی‌شده به روش اسپیلاین مکعبی نشان داد که تاثیر منفی اثرات لبه بر نتایج آسیب‌یابی تا حد زیادی کاهش می‌یابد و در این صورت، ضرایب موجک حداکثر در طول تیر محل آسیب را با دقت خوبی نشان می‌دهد. در ادامه، از تغییرات مقادیر ضرایب موجک حاصل از سنجش‌های متعدد در محل آسیب به منظور تخمین تغییر شدت آن استفاده شد. در نهایت، اثر وجود نویز اندک در پاسخ‌های اخذ شده از تیر بر فرایند آسیب‌یابی پیشنهادی ارزیابی گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Wavelet Transform with Reduced Edge Effects for Damage Identification in the Beams under Incremental Damage

نویسندگان [English]

  • Farhad Jedari Zarezadeh
  • Masood Farzam
  • Saman Bagheri
Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran
چکیده [English]

In this study, wavelet transform with reduced edge effects is used to detect, localize and estimate the incremental damage at various levels in steel beams with different support conditions. For this purpose, a steel beam is modeled using finite element method for two types of support conditions, and three levels of incremental damage is defined by changing the stiffness of the member at a specified location. Then, dynamic displacement response of the beam under impulse loading was extracted and processed with continuous wavelet transform. The continuous wave-let transform of a finite length signal produces abnormally large coefficients close to the borders of the signal which is called "edge effects". To handle edge effects, different methods of signal extension are investigated. The obtained results from the process of extrapolated response by the cubic spline method show that the false indicators caused by edge effects are reduced significantly. In this case, there is a meaningful correlation between relatively large wavelet coefficients and damage location. The wavelet coefficients obtained from several measurements at the detected location of damage is used then to estimate changes in the level of incremental damage. It is shown that the variation of wavelet coefficients at the location of damage is reasonably estimate the various damage levels. Finally, the effects of the presence of low levels of noise in the measured responses of the beam on the proposed damage detection process are evaluated.

کلیدواژه‌ها [English]

  • Damage identification
  • Localization of damage
  • Incremental damage
  • Wavelet transform
  • Edge effects
[1] Steffens RJ. Some aspects of structural vibration. Proceedings of a Symposium on Vibration in Civil Engineering, London, UK. 1966.
[2] Wauer J. On the dynamics of cracked rotors: a literature survey. Applied Mechanics Reviews. 1990 Jun 1; 43(1): 13-17. doi: 10.1115/1.3119157
[3] Salawu OS. Detection of structural damage through changes in frequency: a review. Engineering structures. 1997 Sep 1; 19(9): 718-723. doi: 10.1016/S0141-0296(96)00149-6
[4] Sha G, Radzieński M, Cao M, Ostachowicz W. A novel method for single and multiple damage detection in beams using relative natural frequency changes. Mechanical Systems and Signal Processing. 2019 Oct 1; 132: 335-352. doi: 10.1016/j.ymssp.2019.06.027
[5] Lee NL. Application of two-stage evaluation and optimization update methods for the structural damage detection of a portal beam structure. In Structures. Elsevier. 2021 Feb 1; 29: 684-690. doi: 10.1016/j.istruc.2020.11.035
[6] Zhou Y, Sun L. Effects of environmental and operational actions on the modal frequency variations of a sea-crossing bridge: A periodicity perspective. Mechanical Systems and Signal Processing. 2019 Sep 15;131: 505-523. doi: 10.1016/j.ymssp.2019.05.063
[7] Douka E, Loutridis S, Trochidis A. Crack identification in beams using wavelet analysis. International Journal of solids and structures. 2003 Jun 1; 40(13-14): 3557-3569. doi: 10.1016/S0020-7683(03)00147-1
[8] Rucka M, Wilde K. Application of continuous wavelet transform in vibration based damage detection method for beams and plates. Journal of sound and vibration. 2006 Nov 6; 297(3-5): 536-550. doi: 10.1016/j.jsv.2006.04.015
[9] Shahsavari V, Chouinard L, Bastien J. Wavelet-based analysis of mode shapes for statistical detection and localization of damage in beams using likelihood ratio test. Engineering Structures. 2017 Feb 1; 132: 494-507. doi: 10.1016/j.engstruct.2016.11.056
[10] Wang Q, Deng X. Damage detection with spatial wavelets. International journal of solids and structures. 1999 Aug 1; 36(23): 3443-3468. doi: 10.1016/S0020-7683(98)00152-8
[11] Liew KM, Wang Q. Application of wavelet theory for crack identification in structures. Journal of engineering mechanics. 1998 Feb; 124(2): 152-157. doi: 10.1061/(ASCE)0733-9399(1998)124:2(152)
[12] Quek ST, Wang Q, Zhang L, Ang KK. Sensitivity analysis of crack detection in beams by wavelet technique. International journal of mechanical sciences. 2001 Dec 1; 43(12): 2899-2910. doi: 10.1016/S0020-7403(01)00064-9
[13] Liu JL, Wang SF, Li YZ, Yu AH. Time-varying damage detection in beam structures using variational mode decomposition and continuous wavelet transform. Construction and Building Materials. 2024 Jan 12; 411: 134416. doi: 10.1016/j.conbuildmat.2023.134416
[14] Khanahmadi M, Gholhaki M, Rezaifar O, Dejkam B. Damage identification in steel beam structures based on the comparison of analytical results of wavelet analysis. Civil Infrastructure Researches. 2023 Feb 20; 8(2): 173-183. doi: 10.22091/cer.2022.8340.1407 [In Persian]
[15] Sadeghi F, Yu Y, Zhu X, Li J. Damage identification of steel-concrete composite beams based on modal strain energy changes through general regression neural network. Engineering Structures. 2021 Oct 1; 244: 112824. doi: 10.1016/j.engstruct.2021.112824
[16] Habibzadeh Azari O, Ghaffarzadeh H. Damage Detection Using Wavelet Packet Decomposition and Random Forests Algorithm in Experimental Structure at the UBC (University of British Columbia). Civil Infrastructure Researches. 2018 Feb 20; 3(2): 51-60. doi: 10.22091/cer.2017.2209.1091 [In Persian]
[17] Abdulkareem M, Bakhary N, Vafaei M, Noor NM, Mohamed RN. Application of two-dimensional wavelet transform to detect damage in steel plate structures. Measurement. 2019 Nov 1; 146: 912-923. doi: 10.1016/j.measurement.2019.07.027
[18] Su C, Jiang M, Liang J, Tian A, Sun L, Zhang L, Zhang F, Sui Q. Damage assessments of composite under the environment with strong noise based on synchrosqueezing wavelet transform and stack autoencoder algorithm. Measurement. 2020 May 1; 156: 107587. doi: 10.1016/j.measurement.2020.107587
[19] Pnevmatikos NG, Hatzigeorgiou GD. Damage detection of framed structures subjected to earthquake excitation using discrete wavelet analysis. Bulletin of Earthquake Engineering. 2017 Jan; 15: 227-248. doi: 10.1007/s10518-016-9962-z
[20] Hoggar SG. Mathematics of digital images: creation, compression, restoration, recognition. Cambridge University Press; 2006 Sep 14.
[21] Gröchenig K. Foundations of time-frequency analysis. Springer Science & Business Media; 2013 Dec 1.
[22] Bhatnagar N. Introduction to wavelet transforms. Chapman and Hall/CRC; 2020 Feb 18.
[23] Shi B, Cao M, Wang Z, Ostachowicz W. A directional continuous wavelet transform of mode shape for line-type damage detection in plate-type structures. Mechanical Systems and Signal Processing. 2022 Mar 15; 167: 108510. doi: 10.1016/j.ymssp.2021.108510
[24] Farge M. Wavelet transforms and their applications to turbulence. Annual review of fluid mechanics. 1992 Jan 1; 24(1): 395-458. doi: 10.1146/annurev.fl.24.010192.002143
[25] Wu N, Wang Q. Experimental studies on damage detection of beam structures with wavelet transform. International Journal of Engineering Science. 2011 Mar 1; 49(3): 253-261. doi: 10.1016/j.ijengsci.2010.12.004
[26] Misiti M, Misiti Y, Oppenheim G, Poggi JM. Wavelet toolbox. The MathWorks Inc., Natick, MA. 1996 Mar; 15: 21.
[27] Messina A. Refinements of damage detection methods based on wavelet analysis of dynamical shapes. International Journal of Solids and Structures. 2008 Jul 1; 45(14-15): 4068-4097. doi: 10.1016/j.ijsolstr.2008.02.015
[28] Montanari L, Basu B, Spagnoli A, Broderick BM. A padding method to reduce edge effects for enhanced damage identification using wavelet analysis. Mechanical Systems and Signal Processing. 2015 Feb 1; 52: 264-277. doi: 10.1016/j.ymssp.2014.06.014
CAPTCHA Image