بررسی عددی و آزمایشگاهی بلندای پیزومتریک و نیمرخ سطح آب جریان ماندگار در محیط متخلخل سنگریزه ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی عمران سازه‌های هیدرولیکی، دانشگاه زنجان، زنجان، ایران.

2 دانشیار، گروه مهندسی آب و سازه‌های هیدرولیکی، دانشکده مهندسی عمران، دانشگاه زنجان، زنجان، ایران.

چکیده

در این تحقیق محیط متخلخل سنگریزه­ای با سه دانه­بندی مختلف در یک کانال آزمایشگاهی روباز با عمق 0.8 و پهنای 1 و طول 13 متر تهیه شده و در هر دانه­بندی جریان ماندگار با 4 دبی مختلف برقرار شده است. سپس عمق آب و بلندای پیزومتریک در 23 نقطه طول محیط ثبت گردیده است. براساس داده­های ثبت شده بین مقادیر بلندای پیزومتریک و عمق آب تفاوت قابل ملاحظه­ای وجود دارد که ناشی از افت انرژی ناشی از اثر نیروی درگ می­ باشد. در بخش دوم معادله انرژی به عنوان معادله اصلی حاکم در نظر گرفته شد و با حل آن بلندای فشار پیزومتریک در تمام نقاط محاسبه شده است. در گام بعد با اعمال افت انرژی ناشی از اثر نیروی درگ نیمرخ سطح آب با دقت مناسبی محاسبه گردیده است. بر اساس نتایج به دست آمده متوسط خطا بین هر سه نوع سنگریزه در محاسبه بلندای پیزومتریک  3.3 درصد می­باشد. همچنین مقدار متوسط خطا در محاسبه نیمرخ سطح آب با در نظر گرفتن اثر نیروی درگ 2.36 درصد و بدون لحاظ کردن این اثر 13.44 درصد حاصل شده است. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental and Numerical Investigation of Pizometric Head and Water Surface Profile of Steady Flow in Porous Media

نویسندگان [English]

  • Hassan Hajikazeiman 1
  • Jalal Bazarghan 2
1 Department of Water Engineering and Hydraulic Structures, Faculty of Civil Engineering, University of Zanjan, Zanjan, Iran.
2 Associate Professor, Department of Water Engineering and Hydraulic Structures, Faculty of Civil Engineering, University of Zanjan, Zanjan, Iran.
چکیده [English]

In this article, pressure on the floor and water surface profile at steady flow in rockfill material (coarse grain aggregate) is survived experimentally and numerically. Porous media with small, medium and coarse grading was prepared in a 15 meter length, 1 meter wide and 0.8 meter height laboratory open channel. Pressure changes with pizometers which are installed on bed and water depth with reading from channel side are recorded. Steady flow is established with 3 flows and 12 tests are done totally. Based on experimental data coefficients of binominal relation are calculated with accuracy. Gradual varied flow relations have been used as governing equations. Based on recorded data, there is significant different between pizometric and water depth which amount of that is less in first of media and reach to maximum in end points. Frictional loose of drag force is reason of this deference. In the following, with solving of energy equation, pressure depth in all points is calculated with accuracy and then with applying of the mentioned energy loose, water depth and water surface profile are calculated. As a results, average error of pizometeric head in whole tests is 3.3 percent and mean error of water profile calculation are 2.36 and 13.44 percent for with and without considering of drag force effect Respectively.

کلیدواژه‌ها [English]

  • Drag force
  • Gradual varied flow
  • Porous media
  • Water surface profile
  • Pizometric head
[1] Ergun S. Fluid flow through packed columns. Chemical engineering progress. 1952; 48(2): 89-94.
[2] Ward JC. Turbulent flow in porous media. Journal of the hydraulics division. 1964 Sep; 90(5): 1-12. doi: 10.1061/JYCEAJ.0001096.
[3] Stephenson DJ. Rockfill in hydraulic engineering. Elsevier; 1979.
[4] Sidiropoulou MG, Moutsopoulos KN, Tsihrintzis VA. Determination of Forchheimer equation coefficients a and b. Hydrological Processes: An International Journal. 2007 Feb 15; 21(4): 534-54. doi: 10.1002/hyp.6264
[5] Ahmed N, Sunada DK. Nonlinear flow in porous media. Journal of the Hydraulics Division. 1969 Nov; 95(6): 1847-58. doi: 10.1061/JYCEAJ.0002193
[6] Bari R, Hansen D. Application of gradually-varied flow algorithms to simulate buried streams. Journal of Hydraulic Research. 2002 Nov 1; 40(6): 673-83. doi: 10.1080/00221680209499914
[7] Sedghi-Asl M, Ansari I. Adoption of extended Dupuit–Forchheimer assumptions to non-Darcy flow problems. Transport in Porous Media. 2016 Jul; 113: 457-69. doi: 10.1007/s11242-016-0703-1
[8] Abbas W, Awadalla R, Bicher S, Abdeen MA, El Shinnawy ES. Semi-analytical solution of nonlinear dynamic behaviour for fully saturated porous media. European Journal of Environmental and Civil Engineering. 2021 Jan 28; 25(2): 264-80. doi: 10.1080/19648189.2018.1527728
[9] Sedghi-Asl M, Rahimi H, Farhoudi J, Hoorfar A, Hartmann S. One-dimensional fully developed turbulent flow through coarse porous medium. Journal of Hydrologic Engineering. 2014 Jul 1; 19(7): 1491-6. doi: 10.1061/(ASCE)HE.1943-5584.000093
[10] Salahi MB, Sedghi-Asl M, Parvizi M. Nonlinear flow through a packed-column experiment. Journal of Hydrologic Engineering. 2015 Sep 1; 20(9): 04015003.‏ doi: 10.1061/(ASCE)HE.1943-5584.00011
[11] Hosseini SM, Joy DM. Development of an unsteady model for flow through coarse heterogeneous porous media applicable to valley fills. International Journal of River Basin Management. 2007 Dec 1; 5(4): 253-65.‏ doi: 10.1080/15715124.2007.9635325
[12] Patursson Ø, Swift MR, Tsukrov I, Simonsen K, Baldwin K, Fredriksson DW, Celikkol B. Development of a porous media model with application to flow through and around a net panel. Ocean Engineering. 2010 Feb; 37(2-3): 314-24. doi: 10.1016/j.oceaneng.2009.10.001
[13] Sheikh B, Qiu T. Pore-scale simulation and statistical investigation of velocity and drag force distribution of flow through randomly-packed porous media under low and intermediate Reynolds numbers. Computers & Fluids. 2018 Jul 30; 171: 15-28. doi: 10.1016/j.compfluid.2018.05.029
[14] Wittig K, Nikrityuk P, Richter A. Drag coefficient and Nusselt number for porous particles under laminar flow conditions. International Journal of Heat and Mass Transfer. 2017 Sep; 112: 1005-16. doi: 10.1016/j.ijheatmasstransfer.2017.05.035
[15] Beetstra R, van der Hoef MA, Kuipers JA. Drag force of intermediate Reynolds number flow past mono‐and bidisperse arrays of spheres. AIChE journal. 2007 Feb; 53(2): 489-501. doi: 10.1002/aic.11065
[16] Wang Y, Zhou L, Wu Y, Yang Q. New simple correlation formula for the drag coefficient of calcareous sand particles of highly irregular shape. Powder Technology. 2018 Feb 15; 326: 379-92. doi: 10.1016/j.powtec.2017.12.004
[17] Daneshfaraz R, Majedi-Asl M, Mortazavi S, Bagherzadeh M. Laboratory Evaluation of Energy Dissipation in the Combined Structure of the Vertical Drop with Gabion. Civil Infrastructure Researches, 2022; 8(1): 145-157. doi: 10.22091/cer.2022.7720.1344 [In Persian]
[18] Gudarzi M, Bazargan J, Shoaei M. Longitude Profile Analysis of Water Table in Rockfill Materials Using Gradually Varied Flow Theory with Consideration of Drag Force. Iran Soil and Water Research. 2020; 51: 404-415 [In Persian]
[19] Norouzi H, Bazargan J, Azhang F, Nasiri R. Experimental study of drag coefficient in non-darcy steady and unsteady flow conditions in rockfill. Stochastic Environmental Research and Risk Assessment. 2021: 203-219. doi: 10.1007/s00477-021-02047-4
[20] Mohammadi A. Investigation the Factors Affecting on the Distribution of Real Pressure in non-Darcy-Steady Flow within Rockfill Materials. MSc Thesis, Faculty of Engineering, University of Zanjan. 2022. [In Persian]
CAPTCHA Image