ارزیابی مدل قاب جایگزین جهت تعیین مؤلفه‌های نیرویی ستون‌های قاب خمشی بتنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد سازه، دانشکده مهندسی عمران، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

2 دانشیار، دانشکده مهندسی عمران، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران.

3 دانش آموخته دکتری سازه، دانشکده عمران، دانشگاه صنعتی شریف، تهران، ایران.

چکیده

امروزه تحلیل‌های دینامیکی غیرخطی در حوزه‌ی تحقیقات و طراحی مهندسی سازه و زلزله کاربرد فراوانی داشته و به طور گسترده در طراحی براساس عملکرد سازه‌ها، طراحی براساس تاب‌آوری، و همچنین سایر زمینه‌های احتمالاتی و بهینه‌سازی، مورد استفاده قرار می‌گیرد. از آنجایی که این تحلیل‌ها، هزینه‌ی محاسباتی بالایی را به محققان تحمیل می‌کند، در بسیاری از این تحلیل‌ها از مدل‌های ساده شده استفاده می‌شود. قاب جایگزین یک مدل ساده شده برای قاب‌های خمشی فولادی و بتنی است که از طرفی پاسخ‌های تغییرمکانی قاب را با دقت خیلی خوبی پیش‌بینی می‌کند و از طرف دیگر، زمان تحلیل را تا چند برابر کاهش می‌دهد. علی‌رغم ارزیابی‌های متعدد مدل قاب جایگزین در تحلیل‌های دینامیکی غیرخطی، تحلیل‌های دینامیکی فزاینده و تعیین منحنی‌های شکنندگی، دقت این مدل جهت پیش‌بینی پاسخ‌های نیرویی مورد بررسی قرار نگرفته است. از آنجایی که در ارزیابی عملکردی سازه‌ها، بررسی اعضای نیرو کنترل جهت جلوگیری از ایجاد مکانیزم نامطلوب شکست، از اهمیت ویژه‌ای برخوردار است. در این تحقیق ابتدا پاسخ‌های نیرویی ستون‌های قاب اصلی تحت رکورد زلزله با استفاده از یک روش تحلیلی از پاسخ‌های قاب جایگزین به دست آمد. سپس، دقت پاسخ‌های به دست آمده، مورد ارزیابی قرار گرفت. نتایج ارزیابی‌های انجام شده نشان داد که مدل قاب جایگزین لنگر خمشی، نیروی برشی، و نیروی محوری را به طور میانگین بین 0.8 تا 1.2 پاسخ ستون‌های قاب اصلی پیش‌بینی می‌کند که میزان پراکندگی پاسخ‌ها نیز برای رکوردهای مختلف کمتر از 0.2 است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Robustness Evaluation of Substitute Frame Model for Determination of Force Actions in Columns of RC Moment Frames

نویسندگان [English]

  • Sajedeh Abbasgholinia 1
  • Horr Khosravi 2
  • Shaghayegh Vaseghiamiri 3
1 MSc Student of Structural Engineering, Department of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran
2 Associate Professor, Faculty of Civil Engineering, Noshirvani University of Technology, Babol, Iran.
3 PhD of structural engineering, Department of Civil Engineering, Sharif University of Technology, Tehran, Iran
چکیده [English]

Nowadays, extensive nonlinear dynamic analysis is widely used in different fields of research and design of structural and earthquake engineering. It has been applied in performance-based design, resilience-based design, and also other probabilistic fields and optimization. This extensive analysis imposes a high computational cost on the researcher. However, using simplified models is an appropriate approach. The Substitute Frame is a simplified model for steel and RC moment frames, which on the one hand predicts the displacement responses of the frame with very good accuracy and on the other hand, reduces the analysis time by several times. Despite numerous evaluations of the substitute frame model in nonlinear dynamic analyses, incremental dynamic analyses, and fragility analyses, the model's accuracy has not yet been investigated for predicting moment frames' force responses. In performance-based engineering, force-control actions should be designed to prevent the undesirable failure mechanism. Hence, in this study, first, the force response of the columns was predicted using the substitute frame model, and then its accuracy was evaluated comparing to the original frame response. The results of evaluations showed that the substitute frame predicts the columns bending moments, shear forces, and axial forces of the original frame with more than 90% accuracy.

کلیدواژه‌ها [English]

  • Substitute frame model
  • Simplified model
  • RC moment frames
  • Force-control elements
  • Columns force actions
[1] Lignos, D. G., Putman, C., & Krawinkler, H. (2015). Application of simplified analysis procedures for performance-based earthquake evaluation of steel special moment frames, Earthquake Spectra, 31(4), 1949-1968. doi: 10.1193/081413EQS230M
[2] Li, X., & Kurata, M. (2019). Probabilistic updating of fishbone model for assessing seismic damage to beam–column connections in steel moment‐resisting frames, Computer‐Aided Civil and Infrastructure Engineering, 34(9), 790-805. doi: 10.1111/mice.12429
[3] Vaseghiamiri, S., Mahsuli, M., Ghannad, M. A., & Zareian, F. (2020). Surrogate SDOF models for probabilistic performance assessment of multistory buildings: Methodology and application for steel special moment frames”, Engineering Structures, 212, 110276. doi: 10.1016/j.engstruct.2020.110276
[4] Joyner, M. D., & Sasani, M. (2020). Building performance for earthquake resilience, Engineering Structures, 210, 110371. doi: 10.1016/j.engstruct.2020.110371
[5] Qu, Z., Gong, T., Wang, X., Li, Q., & Wang, T. (2020). Stiffness and strength demands for pin-supported walls in reinforced-concrete moment frames, Journal of Structural Engineering, 146(9), 04020181. doi: 10.1061/(ASCE)ST.1943-541X.0002758
[6] Pourali, N., Khosravi, H., & Dehestani, M. (2019). An investigation of P-delta effect in conventional seismic design and direct displacement-based design using elasto-plastic SDOF systems, Bulletin of Earthquake Engineering, 17, 313-336. doi: 10.1007/s10518-018-0460-3
[7] Hajimohammadi, M., Khosravi, H., & Dezvareh, R. (2022). P-Delta Effect on Residual Displacement and Collapse Capacity of SDOF Systems during Long and Short Duration Earthquakes. Civil Infrastructure Researches, 7(2), 51-60. doi: 10.22091/cer.2021.7289.1290 [In Persian]
[8] Lai, M., Li, Y., & Zhang, C. (1992). Analysis method of multi-rigid-body model for earthquake responses of shear-type structure”. In Proc., 10th WCEE conf, 4013-4018.
[9] Hajirasouliha, I., & Doostan, A. (2010). A simplified model for seismic response prediction of concentrically braced frames, Advances in Engineering Software, 41(3), 497-505. doi: 10.1016/j.advengsoft.2009.10.008
[10] Iwan, W. D. (1997). Drift spectrum: measure of demand for earthquake ground motions. Journal of structural engineering, 123(4), 397-404. doi: 10.1061/(ASCE)0733-9445(1997)123:4(397)
[11] Huang, C. T. (2003). Considerations of multimode structural response for near-field earthquakes, Journal of engineering mechanics, 129(4), 458-467. doi: 10.1061/(ASCE)0733-9399(2003)129:4(458)
[12] Miranda, E. (1997). Estimation of maximum interstory drift demands in displacement-based design, Rotterdam: Balkema, 253-264.
[13] Miranda, E. (1999). Approximate seismic lateral deformation demands in multistory buildings, Journal of Structural Engineering, 125(4), 417-425. doi: 10.1061/(ASCE)0733-9445(1999)125:4(417)
[14] Miranda, E., & Reyes, C. J. (2002). Approximate lateral drift demands in multistory buildings with nonuniform stiffness, Journal of Structural Engineering, 128(7), 840-849. doi: 10.1061/(ASCE)0733-9445(2002)128:7(840)
[15] Miranda, E., & Akkar, S. D. (2006). Generalized interstory drift spectrum, Journal of structural engineering, 132(6), 840-852. doi: 10.1061/(ASCE)0733-9445(2006)132:6(840)
[16] Khaloo, A. R., & Khosravi, H. (2008). Multi-mode response of shear and flexural buildings to pulse-type ground motions in near-field earthquakes, Journal of Earthquake Engineering, 12(4), 616-630. doi: 10.1080/13632460701513132
[17] Luco, N., Mori, Y., Funahashi, Y., Allin Cornell, C., & Nakashima, M. (2003). Evaluation of predictors of non‐linear seismic demands using ‘fishbone’models of SMRF buildings, Earthquake engineering & structural dynamics, 32(14), 2267-2288. doi: 10.1002/eqe.331
[18] Soleimani, R., & Hamidi, H. (2021). General Substitute Frame Model (GSF) for efficient estimation of seismic demands of steel and RC moment frames, Engineering Structures, 246, 113031. doi: 10.1016/j.engstruct.2021.113031
[19] Khaloo, A. R., & Khosravi, H. (2013). Modified fish-bone model: A simplified MDOF model for simulation of seismic responses of moment resisting frames, Soil Dynamics and Earthquake Engineering, 55, 195-210. doi: 10.1016/j.soildyn.2013.09.013
[20] Soleimani, R., Khosravi, H., & Hamidi, H. (2019). Substitute Frame and adapted Fish-Bone model: Two simplified frames representative of RC moment resisting frames, Engineering Structures, 185, 68-89. doi: 10.1016/j.engstruct.2019.01.127
[21] Khaloo, A. R., Khosravi, H., & Jamnani, H. H. (2015). Nonlinear interstory drift contours for idealized forward directivity pulses using “modified fish-bone” models, Advances in Structural Engineering, 18(5), 603-627. doi: 10.1260/1369-4332.18.5.603
[22] Ghaderi, P., Khosravi, H., & Firoozjaee, A. R. (2020). Consideration of strength-stiffness dependency in the determination of lateral load pattern, Soil Dynamics and Earthquake Engineering, 137, 106287. doi: 10.1016/j.soildyn.2020.106287
[23] Farzaneh, S., & Khosravi, H. (2022). Robustness evaluation of Substitute Frame for determination of collapse margin ratio in steel moment frames, Journal of Steel and Structure, 16 (35), 79-90. [In Persian]
[24] Haghighat, A., & Sharifi, A. (2018). Evaluation of Modified Fish-Bone Model for Estimating Seismic Demands of Irregular MRF Structures, Periodica Polytechnica Civil Engineering, 62(3), 800-811. doi: 10.3311/PPci.11640
[25] Qu, Z., Gong, T., Li, Q., & Wang, T. (2019). Evaluation of the fishbone model in simulating the seismic response of multistory reinforced concrete moment-resisting frames, Earthquake Engineering and Engineering Vibration, 18, 315-330. doi: 10.1007/s11803-019-0506-9
[26] Jamšek, A., & Dolšek, M. (2020). Seismic analysis of older and contemporary reinforced concrete frames with the improved fish-bone model, Engineering Structures, 212, 110514. doi: 10.1016/j.engstruct.2020.110514
[27] Soleimani, R., & Hamidi, H. (2021). Improved Substitute-Frame (ISF) model for seismic response of steel-MRF with vertical irregularities. Journal of Constructional Steel Research, 186, 106918. doi: 10.1016/j.jcsr.2021.106918
[28] Haselton, C. B., & Deierlein, G. G. (2008). Assessing seismic collapse safety of modern reinforced concrete moment-frame buildings, PEER report 2007/08. University of California, Berkeley, CA.
[29] Mazzoni, S., McKenna, F., Scott, M. H., Fenves, G. L., & Jeremic, B. (2006). Open system for earthquake engineering simulation (OpenSees), Berkeley, California.
[30] Ibarra, L. F., Medina, R. A., & Krawinkler, H. (2005). Hysteretic models that incorporate strength and stiffness deterioration, Earthquake engineering & structural dynamics, 34(12), 1489-1511. doi: 10.1002/eqe.495
[31] Haselton, C. B., & Pacific Earthquake Engineering Research Center. (2008). Beam-column element model calibrated for predicting flexural response leading to global collapse of RC frame buildings, Pacific Earthquake Engineering Research Center.
[32] FEMA, P-695. (2009). Quantification of building seismic performance factors. FEMA
CAPTCHA Image