[1] Kansa, E. J. (1990). Multiquadrics- A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates. Computers & Mathematics with applications, 19(8-9), 127-145. doi: 10.1016/0898-1221(90)90270-T
[2] Kindelan, M., Bernal, F., González-Rodríguez, P., & Moscoso, M. (2010). Application of the RBF meshless method to the solution of the radiative transport equation. Journal of Computational Physics, 229(5), 1897-1908. doi: 10.1016/j.jcp.2009.11.014
[3] Kansa, E. J., & Geiser, J. (2013). Numerical solution to time-dependent 4D inviscid Burgers' equations. Engineering Analysis with Boundary Elements, 37(3), 637-645. doi: 10.1016/j.enganabound.2013.01.003
[4] Patel, S., & Rastogi, A. K. (2017). Meshfree multiquadric solution for real field large heterogeneous aquifer system. Water Resources Management, 31(9), 2869-2884. doi: 10.1007/s11269-017-1668-8
[5] Babaee, R., Jabbari, E., & Eskandari-Ghadi, M. (2019). Application of Multiquadric Radial Basis Function method for Helmholtz equation in seismic wave analysis for reservoir of rigid dams. Amirkabir Journal of Civil Engineering, 52(12), 3015-3030. doi: 10.22060/ceej.2019.16443.6230 [In Persian]
[6] Koushki, M., Jabbari, E., & Ahmadinia, M. (2020). Evaluating RBF methods for solving PDEs using Padua points distribution. Alexandria Engineering Journal, 59(5), 2999-3018. doi: 10.1016/j.aej.2020.04.047
[7] Mirabi, M. H., Jabbari, E., & Rajaee, T. (2022). Numerical Solution of Steady Incompressible Turbulent Navier–Stokes Equations using Multiquadric Radial Basis Function (MQ-RBF) Method. Amirkabir Journal of Civil Engineering, 53(12), 5325-5356. doi: 10.22060/ceej.2021.18788.6964 [In Persian]
[8] Fornberg, B., & Wright, G. (2004). Stable computation of multiquadric interpolants for all values of the shape parameter. Computers & Mathematics with Applications, 48(5-6), 853-867. doi: 10.1016/j.camwa.2003.08.010
[9] Xiang, S., Wang, K. M., Ai, Y. T., Sha, Y. D., & Shi, H. (2012). Trigonometric variable shape parameter and exponent strategy for generalized multiquadric radial basis function approximation. Applied Mathematical Modelling, 36(5), 1931-1938. doi: 10.1016/j.apm.2011.07.076
[10] Esmaeilbeigi, M., & Hosseini, M. M. (2014). A new approach based on the genetic algorithm for finding a good shape parameter in solving partial differential equations by Kansa’s method. Applied Mathematics and Computation, 249, 419-428. doi: 10.1016/j.amc.2014.10.012
[11] Biazar, J., & Hosami, M. (2016). Selection of an interval for variable shape parameter in approximation by radial basis functions. Advances in Numerical Analysis, 2016. doi: 10.1155/2016/1397849
[12] Azarboni, H. R., Keyanpour, M., & Yaghouti, M. (2019). Leave-Two-Out Cross Validation to optimal shape parameter in radial basis functions. Engineering Analysis with Boundary Elements, 100, 204-210. doi: 10.1016/j.enganabound.2018.06.011
[13] Fallah, A., Jabbari, E., & Babaee, R. (2019). Development of the Kansa method for solving seepage problems using a new algorithm for the shape parameter optimization, Computers & Mathematics with Applications, 77(3), 815-829. doi: 10.1016/j.camwa.2018.10.021
[14] Koushki, M., Babaee, R. & Jabbari, E. (2020). Application of RBF Multiquadric method for solving seepage problems using a new algorithm for Optimization of the shape parameter. Amirkabir Journal of Civil Engineering, 52(4), 1009-1024. doi: 10.22060/ceej.2019.15155.5840 [In Persian]
[15] Berger, M. J., & Jameson, A. (1985). Automatic adaptive grid refinement for the Euler equations. AIAA journal, 23(4), 561-568. doi: 10.2514/3.8951
[16] Sarra, S. A. (2005). Adaptive radial basis function methods for time dependent partial differential equations. Applied Numerical Mathematics, 54(1), 79-94. doi: 10.1016/j.apnum.2004.07.004
[17] Libre, N. A., Emdadi, A., Kansa, E. J., Shekarchi, M., & Rahimian, M. (2009). A multiresolution prewavelet-based adaptive refinement scheme for RBF approximations of nearly singular problems. Engineering analysis with boundary elements, 33(7), 901-914. doi: 10.1016/j.enganabound.2009.02.007
[18] Biazar, J., & Hosami, M. (2015). An adaptive meshless method of line based on radial basis functions. Iranian Journal of Numerical Analysis and Optimization, 5(2), 45-58. doi: 10.22067/ijnao.v5i2.35815
[19] Kaennakham, S., & Chuathong, N. (2019). An automatic node-adaptive scheme applied with a RBF-collocation meshless method. Applied Mathematics and Computation, 348, 102-125. doi: 10.1016/j.amc.2018.11.066
[20] Cavoretto, R., & De Rossi, A. (2020). An adaptive LOOCV-based refinement scheme for RBF collocation methods over irregular domains. Applied Mathematics Letters, 103, 106178. doi: 10.1016/j.aml.2019.106178
[21] Cavoretto, R., & De Rossi, A. (2020). A two-stage adaptive scheme based on RBF collocation for solving elliptic PDEs. Computers & Mathematics with Applications, 79(11), 3206-3222. doi: 10.1016/j.camwa.2020.01.018
[22] Kolbe, N., & Sfakianakis, N. (2022). An adaptive rectangular mesh administration and refinement technique with application in cancer invasion models. Journal of Computational and Applied Mathematics, 416, 114442. doi: 10.1016/j.cam.2022.114442
[23] Cavoretto, R., De Rossi, A., Sommariva, A., & Vianello, M. (2022). RBFCUB: A numerical package for near-optimal meshless cubature on general polygons. Applied Mathematics Letters, 125, 107704. doi: 10.1016/j.aml.2021.107704
[24] Wei, C., Hu, Q., Li, S., & Shi, X. (2023). Hydrodynamic interactions and wake dynamics of fish schooling in rectangle and diamond formations. Ocean Engineering, 267, 113258. doi: 10.1016/j.oceaneng.2022.113258
[25] Loubère, R., Turpault, R., & Bourriaud, A. (2023). A MOOD-like compact high order finite volume scheme with adaptive mesh refinement. Applied Mathematics and Computation, 443, 127792. doi: 10.1016/j.amc.2022.127792
[26] Sankaranarayanan, S., Shankar, N. J., & Cheong, H. F. (1998). Three-dimensional finite difference model for transport of conservative pollutants. Ocean Engineering, 25(6), 425-442. doi: 10.1016/S0029-8018(97)00008-5
[27] Mohammadalian, S. (2022). Evaluation of the performance of adaptive point distribution algorithms in Multiquadric radial basis functions meshfree methods in solving 1-D and 2-D problems. MSc. Thesis, Department of Civil Engineering, Faculty of Engineering, University of Qom, Qom, Iran. [In Persian]
ارسال نظر در مورد این مقاله