بررسی آزمایشگاهی تأثیر شدت هیدروگراف سیلاب بر فرسایش بستر تحت جریان غیرماندگار واقعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب و سازه‌های هیدرولیکی، دانشکده مهندسی عمران، دانشگاه زنجان، زنجان، ایران.

2 دانشیار، گروه مهندسی آب و سازه‌های هیدرولیکی، دانشکده مهندسی عمران، دانشگاه زنجان، زنجان، ایران.

3 گروه مهندسی عمران، دانشکده فنی دانشگاه ارومیه، ارومیه، ایران.

چکیده

رودخانه‌های طبیعی نرخ انتقال رسوب قابل‌توجهی را در خلال وقوع سیلاب تجربه می‌کنند. هدف پژوهش حاضر، بررسی تأثیر پارامتر شدت هیدروگراف سیلاب بر میزان انتقال رسوبات بستر است. بدین منظور، با تعبیه یک بُرد واسط بین رایانه و مبدل پمپ، جریان غیرماندگار واقعی با دقت بالا درون کانال شیب‌پذیر به طول 15 متر ایجاد گردید. رسوبات به قطر 69/2 میلی‌متر در کف کانال به‌صورت یکنواخت تسطیح گردیده و پس از اشباع شدن، هیدروگراف سیلاب بر روی آن اعمال گردیده است. 20 حالت هیدروگراف با پارامتر شدت متفاوت مورد آزمایش قرار گرفته و نرخ فرسایش در طی زمان هیدروگراف به دست آمده است. نتایج حاصل بیانگر آن است که بیشینه نرخ فرسایش همواره نزدیک به اوج هیدروگراف سیلاب رخ می‌دهد و تأخیر زمانی بین اوج هیدروگراف سیلاب و اوج هیدروگراف رسوب، عمدتاً به‌صورت تأخیر مثبت بوده است. نرخ فرسایش در شاخه صعودی هیدروگراف بیشتر از شاخه نزولی بوده که با کاهش پارامتر شدت جریان، فاصله بین آن‌ها در نمودار هیسترزیس رسوب کاهش می‌یابد. تغییرات نرخ انتقال بار بستر (qb) برحسب دبی جریان (Q) به‌صورت هیسترزیس ساعت‌گرد می‌باشد. با کاهش 32، 57، 75 و 87 درصدی پارامتر شدت هیدروگراف، حجم کل رسوبات انتقال یافته به ترتیب 27، 51، 78 و 90 درصد کاهش می‌یابد. کاهش 50 درصدی زمان پایه هیدروگراف در شرایط یکسان، به‌طور میانگین موجب کاهش 46 درصدی حجم کل رسوبات انتقال یافته شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental Investigation of the Effects of Flood Hydrograph Intensity on Bed Erosion under Real Unsteady Flow

نویسندگان [English]

  • Bahman Aghazadeh gharebagh 1
  • Jalal Bazarghan 2
  • Mirali Mohammadi 3
1 Department of Water Engineering and Hydraulic Structures, Faculty of Civil Engineering, University of Zanjan, Zanjan, Iran
2 Associate Professor, Department of Water Engineering and Hydraulic Structures, Faculty of Civil Engineering, University of Zanjan, Zanjan, Iran
3 Department of Civil Eng., Faculty of Eng., Urmia University, Urmia, Iran.
چکیده [English]

Natural rivers experience significant sediment transport rates during floods.The purpose of this study was to investigate the effects of flood hydrograph intensity parameter on the amount of bed sediment transport rate. For this purpose, a real unsteady flow hydrograph was created inside a 15 meters long tilting flume by installing an interface board between the computer and the pump inverter. Sediments with a d50 of 2.69 mm have been put uniformly on the bottom of the channel and the flood hydrograph has been applied on it after saturation. 20 cases of hydrographs with different intensity parameters were tested and the erosion rate was obtained during the hydrograph time. The results show that the maximum erosion rate always occurs near the peak of the flood hydrograph and the time delay between the peak of the flood hydrograph and the peak of the sediment hydrograph is mostly positive. The erosion rate in the rising limb of the hydrograph is higher than the falling limb, and the distance between them decreases in the hysteresis diagram as the flow intensity parameter decreases. The changes of bedload transport rate (qb) in terms of flow rate (Q) are clockwise hysteresis. By decreasing the hydrograph intensity parameter by 32, 57, 75 and 87%, the total volume of transferred sediments decreases by 27, 51, 78 and 90%, respectively. A 50% decrease in the base time of the hydrograph under the same conditions has caused a 46% decrease in the total volume of transported sediments.

کلیدواژه‌ها [English]

  • River
  • Unsteady Flow
  • Flood Hydrograph
  • Erosion Rate
  • Experimental study
[1] Fielding, C. R., Alexander, J., & Allen, J. P. (2018). The role of discharge variability in the formation and preservation of alluvial sediment bodies, Sedimentary Geology, 365, 1-20. doi: 10.1016/j.sedgeo.2017.12.022
[2] Hassan, M. A., Egozi, R., & Parker, G. (2006). Experiments on the effect of hydrograph characteristics on vertical grain sorting in gravel bed rivers, Water Resour. Res., 42, W09408. doi: 10.1029/2005WR004707
[3] Billi, P. (2011). Flash flood sediment transport in a steep sand-bed ephemeral stream, International Journal of Sediment Research. 26(2), 193-209. doi: 10.1016/S1001-6279(11)60086-3
[4] Reid, I., Laronne, J. B., & Powell, D. M. (1998). Flash-flood and bedload dynamics of desert gravel-bed streams, Hydrological Processes, 12(4), 543-557. doi: 10.1002/(SICI)1099-1085(19980330)12:4<543::AID-HYP593>3.0.CO;2-C
[5] Sui, J., Koehler, G., & Krol, F. (2010). Characteristics of rainfall, snowmelt and runoff in the headwater region of the main river watershed in Germany”, Water resources management, 24, 2167-2186. doi: 10.1007/s11269-009-9545-8
[6] Kampf, S.K., & Lefsky, M.A. (2016). Transition of dominant peak flow source from snowmelt to rainfall along the Colorado Front Range: Historical patterns, trends, and lessons from the 2013 Colorado Front Range floods, Water Resources Research, 52(1), 407-422. doi: 10.1002/2015WR017784
[7] Sobhkhiz, R., & Mardookhpour, A. (2019). Numerical Simulation of the Effect of Pile Geometry and Foundation on Local Scour in Inclined Bridge Group Pier, Civil Infrastructure Researches, 5(1), 147-164. doi: 10.22091/cer.2019.4278.1149 [In Persian]
[8] Chang, W. Y., Lai, J. S., & Yen, C. L. (2004). Evaluation of scour depth at circular bridge piers, Journal of Hydraulic Engineering, 130(9), 905-913. doi: 10.1061/(ASCE)0733-9429(2004)130:9(905)
[9] Oliveto, G., & Hager, W. H. (2005). Further results to time-dependent local scour at bridge elements, Journal of Hydraulic Engineering, 131(2), 97-105. doi: 10.1061/(ASCE)0733-9429(2005)131:2(97)
[10] Mao, L. (2012). The effect of hydrographs on bed load transport and bed sediment spatial arrangement, Journal of Geophysical Research, 117, F03024. doi: 10.1029/2012JF002428
[11] Karimiaei Tabarestani, M., & Zarati, A. (2014). Effect of flood hydrograph peak time on local scour around the bridge pier, Journal of Hydraulics, 9(3), 15-32. doi: 10.30482/jhyd.2014.10173 [In Persian]
[12] Martin, R. L., & Jerolmack, D. J. (2013). Origin of hysteresis in bed form response to unsteady flows, Water Resources Research, 49(3):1314-1333. doi: 10.1002/wrcr.20093
[13] Waters, K. A., & Curran, J. C. (2015). Linking bed morphology changes of two sediment mixtures to sediment transport predictions in unsteady flows, Water Resources Research, 51(4), 2742-2741. doi: 10.1002/2014WR016083
[14] Plumb, B. D., JWez, C., Annable, W. K., McKie, C. W., & Franca, M. J. (2020). The impact of hydrograph variability and frequency on sediment transport dynamics in a gravel-bed flume, Earth Surface Processes and Landforms, 45(4), 816-830. doi: 10.1002/esp.4770
[15] Tabarestani, M. K., Zarrati, A. R. (2015). Sediment transport during flood event: A review, International Journal of Environmental Science and Technology, 12, 775-788. doi: 10.1007/s13762-014-0689-6
[16] Duan, Z., Chen, J., Jiang, C., Liu, X., & Zhao, B. (2020). Experimental Study on Uniform and Mixed Bed-Load Sediment Transport under Unsteady Flow, Applied Sciences, 10(6), 2002. doi: 10.3390/app10062002
[17] De Sutter, R., Verhoeven, R., & Krein, A. (2001). Simulation of sediment transport during flood events: Laboratory work and field experiments, Hydrological Sciences Journal, 46(4), 599-610. doi: 10.1080/02626660109492853
[18] Lee, K. T., Liu, Y. L., and Cheng, K. H. (2004). Experimental investigation of bedload transport processes under unsteady flow conditions, Hydrological Processes, 18(13), 2439-2454. doi: 10.1002/hyp.1473
[19] Warmink, J. J., Schielen, R. M. J., & Dohmen‐Janssen, C. M. (2012). Bed form evolution under varying discharges, flume versus fields, In Proceedings River Flow 2012, Costa Rica. 
[20] Guney, M. S., Bombar, G., & Aksoy, A. O. (2013). Experimental study of the coarse surface development effect on the bimodal bed-load transport under unsteady flow conditions, Journal of Hydraulic Engineering, 139, 12-21. doi: 10.1061/(ASCE)HY.1943-7900.0000640
[21] Phillips, C. B., Hill, K. M., Paola, C., Singer, M. B., & Jerolmack, D. J. (2018). Effect of flood hydrograph duration, magnitude, and shape on bed load transport dynamics, Geophysical Research Letters, 45(16), 8264-8271. doi: 10.1029/2018GL078976
[22] Bombar, G., Elçi, Ş., Tayfur, G., Güney, M. Ş., & Bor, A. (2011). Experimental and numerical investigation of bed-load transport under unsteady flows, Journal of Hydraulic Engineering, 137(10), 1276-1282. doi: 10.1061/(ASCE)HY.1943-7900.0000412
[23] Mrokowska, M. M., Rowinski, P. M., Ksiazek, L., Struzynski, A., Wyrebek, M., & Radecki-Pawlik, A. (2018). Laboratory studies on bedload transport under unsteady flow conditions, Journal of Hydrology and Hydromechanics, 66(1), 23-31. doi: 10.1515/johh-2017-0032
[24] Humphries, R., Venditti, J. G., Sklar, L. S., & Wooster, J. K. (2012). Experimental evidence for the effect of hydrographs on sediment pulse dynamics in gravel-bedded rivers, Water Resources Research, 48, W01533. doi: 10.1029/2011WR010419
[25] Wang, L., Cuthbertson, A. J. S., Pender, G., & Cao, Z. (2015). Experimental investigations of graded sediment transport under unsteady flow hydrographs, International Journal of Sediment Research, 30(4), 306-320. doi: 10.1016/j.ijsrc.2015.03.010
[26] Li, Z., Qian, H., Cao, Z., Liu, H., Pender, G., & Hu, P. (2018). Enhanced bed load sediment transport by unsteady flows in a degrading channel, International Journal of Sediment Research, 33(3), 327-339. doi: 10.1016/j.ijsrc.2018.03.002
[27] Wang, L., Cuthbertson, A., Pender, G., & Zhong, D. (2019). Bed load sediment transport and morphological evolution in a degrading uniform sediment channel under unsteady flow hydrographs, Water Resources Research, 55(7), 5431-5452. doi: 10.1029/2018WR024413.
[28] Khajavi, M., Kashefipour, S. M., & Bejestan, M. S. (2022). Bridge Abutment Protection against Scouring for Unsteady Flow Conditions, Periodica Polytechnica Civil Engineering, 66(1), 310-322. doi: 10.3311/PPci.18892 
[29] Fang, H. W., Chen, M. H., & Chen, Q. H. (2008). One-dimensional numerical simulation of non-uniform sediment transport under unsteady flows, International Journal of Sediment Research, 23(4), 316-328. doi: 10.1016/S1001-6279(09)60003-2
[30] Bai, Y., & Duan, J. G. (2014). Simulating unsteady flow and sediment transport in vegetated channel network, Journal of hydrology, 515, 90-102. doi: 10.1016/j.jhydrol.2014.04.030
[31] Ghosh, A., Roy, M. B., Roy, P. K., & Mukherjee, S. (2021). Assessing the nature of sediment transport with bridge scour by 1D sediment transport model in the sub-catchment basin of Bhagirathi-Hooghly river, Modeling Earth Systems and Environment, 7(4), 2823-2845. doi: 10.1007/s40808-020-01058-4
[32] Caviedes-Voullieme, D., Morales-Hernandez, M., Juez, C., Lacasta, A., & Garcia-Navarro, P. (2017). Two-Dimensional Numerical Simulation of Bed-Load Transport of a Finite-Depth Sediment Layer: Applications to Channel Flushing, Journal of Hydraulic Engineering, 143(9), 04017034. doi: 10.1061/(ASCE)HY.1943-7900.0001337
[33] Soares-Frazao, S., & Zech, Y. (2011). HLLC scheme with novel wave-speed estimators appropriate for two-dimensional shallow-water flow on erodible bed, International journal for numerical methods in fluids, 66(8), 1019-1036. doi: 10.1002/fld.2300
[34] Lai, Y. G., Liu, X., Bombardelli, F. A., & Song, Y. (2022). Three-Dimensional Numerical Modeling of Local Scour: A State-of-the-Art Review and Perspective, Journal of Hydraulic Engineering, 148(11), 03122002. doi: 10.1061/(ASCE)HY.1943-7900.0002019
[35] Sisinggih, D., Wahyuni, S., & Rasyid, A. (2021). Flow and sediment transport in a sharp river bend using a 3D-RANS model, In IOP Conference Series: Earth and Environmental Science, 930(1), 012033. doi: 10.1088/1755-1315/930/1/012033
[36] ASCE. (2008). Sedimentation engineering manuals and reports on engineering practice 110, American Society of Civil Engineers. 
[37] Brownlie, W. R. (1981). Prediction of flow depth and sediment discharge in open channels, Keck Laboratory of Hydraulics & Water Resources, Caltech. doi: 10.7907/Z9KP803R
[38] Ahanger, M. A., Asawa, G. L., & Lone, M. A. (2008). Experimental study of sediment transport hysteresis, Journal of Hydraulic Research, 46(5), 628-635. doi: 10.3826/jhr.2008.3185
[39] Williams, G. P. (1989). Sediment concentrations versus water discharge during single hydrologic events in rivers, Journal of Hydrology, 111(1), 89-106. doi: 10.1016/0022-1694(89)90254-0
[40] Reesink, A. J. H., & Bridge, J. S. (2007). Influence of superimposed bedforms and flow unsteadiness on formation of cross strata in dunes and unit bars, Sedimentary Geology, 202(1), 281-296. doi: 10.1016/j.sedgeo.2007.02.005
[41] Reesink, A. J. H., & Bridge, J. S. (2009). Influence of superimposed bedforms and flow unsteadiness on formation of cross strata in dunes and unit bars- part 2, further experiments, Sedimentary Geology, 222(3), 274-300. doi: 10.1016/j.sedgeo.2009.09.014
[42] Reesink, A. J. H., Parsons, D., Ashworth, P., Hardy, R., Best, J., Unsworth, C., McLelland, S., & Murphy, B. (2013). The response and hysteresis of alluvial dunes under transient flow conditions, In Mar. River Dunes 2013, Conf. Proc, 220, 215. 
[43] Wang, L., Cuthbertson, A. J., Zhang, S. H., Pender, G., Shu, A. P., & Wang, Y. Q. (2021). Graded bed load transport in sediment supply limited channels under unsteady flow hydrographs. Journal of Hydrology, 595, 126015. doi: 10.1016/j.jhydrol.2021.126015
[44] Gunsolus, E. H., & Binns, A. D. (2018). Effect of morphologic and hydraulic factors on hysteresis of sediment transport rates in alluvial streams, River Research and Applications, 34(2), 183-192. doi: 10.1002/rra.3184
[45] Yen, C. L. & Lee, K. T. (1995). Bed topography and sediment sorting in channel bend with unsteady flow, Journal of Hydraulic Engineering, 121(8), 591-599. doi: 10.1061/(ASCE)0733-9429(1995)121:8(591)
[46] Graf, W. H., & Suszka, L. (1985). Unsteady flow and its effect on sediment transport, In 21st IAHR congress, 539-544.
[47] Suszka, L. (1988). Sediment transport at steady and unsteady flow: a laboratory study, EPFL, 704. doi: 10.5075/epfl-thesis-704
[48] Vanoni, V. A., & Brooks, N. H. (1957). Laboratory studies of the roughness and suspended load of alluvial streams, 11, US Army Engineer Division, Missouri River.
 
CAPTCHA Image