[1] Atienza, J., Aragon, P., Herrero, M. A., Puchades, R., & Maquieira, A. (2005). State of the art in determination of MTBE in natural waters and soils, Critical reviews in analytical chemistry, 35(4), 317-337. doi: 10.1080/10408340500431280
[2] Karkush, M. O., & Kareem, Z. A. (2021). Investigation the impacts of fuel oil contamination on the behaviour of passive piles group in clayey soils, European Journal of Civil and Environmental Engineering, 25(3), 485-501. doi: 10.1080/19648189.2018.1531790
[3] Ahmadi, M., Ebadi, T., & Maknoon, R. (2021). Effects of crude oil contamination on geotechnical properties of sand-kaolinite mixtures, Engineering Geology, 283, 1-13. doi: 10.1016/j.enggeo.2021.106021
[4] Deeb, R. A., Chu, K. H., Shih, T., Linder, S., Suffet, I., Kavanaugh, M. C., & Alvarez-Cohen, L. (2004). MTBE and Other Oxygenates: Environmental Sources, Analysis, Occurrence, and Treatment, Environmental Engineering Science, 20(5), 433-447. doi: 10.1089/109287503768335922
[5] Belpoggi, F., Soffritti, M., & Maltoni, C. (1995). Methyl-tertiary-butyl ether (MTBE)-a gasoline additive-causes testicular and lymphohaematopoietic cancers in rats, Toxicology and Industrial Health, 11(2), 119-149. doi: 10.1177/074823379501100202
[6] Liang, C., Guo, Y. Y., Chien, Y. C., & Wu, Y. J. (2010). Oxidative degradation of MTBE by pyrite-activated persulfate: Proposed reaction pathways, Industrial and Engineering Chemistry Research, 49(18), 8858-8864. doi: 10.1021/ie100740d
[7] Mirzaei, K., Ghanizadeh, A. R., & Bakhtiari, S. (2021). Strength Characteristics of High Plasticity Clay Sub-grade Soil Stabilized with Ground Granulated Blast Furnas Slag, Fly-Ash and Diatomite, Journal of Civil Infrastructure Researches, 6(2), 67-78. doi: 10.22091/CER.2021.6858.1241 [In Persian]
[8] Phanikumar, B. R., Shankar, M. U., & Manikanta, D. (2022). Interaction of diesel oil contaminants with laterite soil and bentonite treated by sawdust -landfill liner, Geomechanics and Geoengineering: An International Journal, 1-17. doi: 10.1080/17486025.2022.2067595
[9] Ingles, O. H. (1987). Soil stabilization, Ground Engineer's Reference Book, Butterworth-Heinemann, London, Chapter 38, 1-26.
[10] Sherwood, P. T. (1993). Soil Stabilization with Cement and Lime, Her Majesty's Stationery Office, London.
[11] Bell, F. G. (1996). Lime stabilization of clay minerals and soils, Engineering Geology, 42(4), 223-237. doi: 10.1016/0013-7952(96)00028-2
[12] Bell, F. G., & Coulthard, J. M. (1990). Stabilization of clay coils with lime, Municipal Engineer, 7(3), 125-140.
[13] Unluer, C., & Al-Tabbaa, A. (2011). Green Construction with Carbonating Reactive Magnesia Blocks: Effect of Cement and Water Contents, International Conference on Future Concrete, Dubai, UAE.
[14] Shand, M. A. (2006). The Chemistry and Technology of Magnesia, 1st edition, John Wiley & Sons, Hoboken, New Jersey.
[15] Al-Tabbaa, A. (2013). Reactive magnesia cement, Eco-efficient concrete, 1st edition, Woodhead Publishing, Sawston, Cambridge, 523-543.
[16] Jin, F., Gu, K., & Al-Tabbaa, A. (2015). Strength and hydration properties of reactive MgO-activated ground granulated blastfurnace slag paste, Cement and Concrete Composites, 57, 8-16. doi: 10.1016/j.cemconcomp.2014.10.007
[17] Iyengar, S., & Al-Tabbaa, A. (2008). Application of Two Novel Magnesia-Based Cements in the Stabilization/Solidification of Contaminated Soils, American Society of Civil Engineers GeoCongress, New Orleans, Louisiana, United States, 716-723. doi: 10.1061/40970(309)90
[18] Amini, M., Estabragh, A. R., & Abdollahi, J. (2021). Improvement the Behaviors of a Clay Soil Contaminated with Phenanthrene by Using MgO, Ferdowsi Civil Engineering, 34(3), 53-66. doi: 10.22067/jfcei.2022.71848.1055 [In Persian]
[19] Goodarzi, A. R., & Movahedrad, M. (2017). Stabilization/solidification of zinc-contaminated kaolin clay using ground granulated blast-furnace slag and different types of activators, Applied Geochemistry, 81, 155-165. doi: 10.1016/j.apgeochem.2017.04.014
[20] Estabragh, A. R., Kholoosi, M. M., Ghaziani, F., & Javadi, A. A. (2017). Stabilization and Solidification of a Clay Soil Contaminated with MTBE, Journal of Environmental Engineering, 143(9), 04017054. doi: 10.1061/(ASCE)EE.1943-7870.0001248
[21] Sobhani Nezhad, R., Nasehi, S. A., Uromeihy, A., & Nikudel, M. R. (2020). Utilization of Nanosilica and Hydrated Lime to Improve the Unconfined Compressive Strength (UCS) of Gas Oil Contaminated Clay, Geotechnical and Geological Engineering, 39(3), 2633-2651. doi: 10.1007/s10706-020-01642-6
[22] Hamidi, A., & Hajimohammadi, M. (2021). Improving the mechanical behaviour of clay contaminated with glycerol and anthracene using lime and Portland cement, Geomechanics and Geoengineering, 1-15. doi: 10.1080/17486025.2021.1992515
[23] Hamidi, A., & Abdoos, S. (2020). Application of Lime and Portland Cement for Improvement of Clay Contaminated with Anthracene and Glycerol, Journal of Civil Infrastructure Researches, 5(2), 111-122. doi: 10.22091/CER.2020.5374.1198 [In Persian]
[24] Estabragh, A. R., Bordbar, A. T., Ghaziani, F., & Javadi, A. A. (2016). Removal of MTBE from a clayey soil using electrokinetic technique, Environmental Technology, 37(14), 1745-1756. doi: 10.1080/09593330.2015.1131750
[25] Tabebordbar, A., Ghaziani, F., Estabragh, A. R., & Liaghat, A. (2014). Adsorption Capacity, Separation Method and Determination of the Concentration of MTBE in Contaminated Kaolinite Clay Soil, Iranian Journal of Soil and Water Research, 44(4), 347-355. doi: 10.22059/ijswr.2013.50407 [In Persian]
[26] Estabragh, A. R., Beytolahpour, I., Javadi, A. A. )2011). Effect of Resin on the Strength of Soil-CementMixture, Journal of Materials in Civil Engineering, 23(7), 969-976. doi: 10.1061/(ASCE)MT.1943-5533.0000252
[27] Estabragh, A. R., Khatibi, M., Javadi, A. A. (2016). Effect of Cement on Treatment of a Clay Soil Contaminated with Glycerol, Journal of Materials in Civil Engineering, 28(4), 04015157. doi: 10.1061/(ASCE)MT.1943-5533.0001443
[28] Mitchell, J. K., & Soga, K. (2005). Fundamentals of soil behavior, 3rd edition, John Wiley & Sons, Hoboken, New Jersey.
[29] Estabragh, A. R., Khajepour, H., Javadi, A. A., & Amini, M. (2022). Effect of forced carbonation on the behaviour of a magnesia-stabilised clay soil, International Journal of Pavement Engineering, 23(5), 1691-1705. doi: 10.1080/10298436.2020.1821023
[30] Liska, M., & Vandeperre, L. J. (2008). Influence of carbonation on the properties of reactive magnesia cement-based pressed masonry units, Advances in Cement Research, 20(2), 53-64. doi: 10.1680/adcr.2008.20.2.53
[31] Vandeperre, L. J., Liska, M., & Al-Tabbaa, A. (2008). Microstructures of reactive magnesia cement blends, Cement and Concrete Composites, 30(8), 706-714. doi: 10.1016/j.cemconcomp.2008.05.002
[32] Ratnaweera, P., & Meegoda, J. (2006). Shear Strength and Stress-Strain behavior of Contaminated Soils, Geotechnical Testing Journal, 29(2), 133-140. doi: 10.1520/GTJ12686
[33] Unluer, C., & Al-Tabbaa, A. (2012). Effect of Aggregate Size Distribution on the Carbonation of Reactive Magnesia Based Porous Blocks, 18th Annual International Sustainable Development Research Conference, Hull, UK.
ارسال نظر در مورد این مقاله