تخمین عمق آبشستگی پایین‌دست شیب‌شکن قائم با استفاده از الگوریتم ماشین بردار پشتیبان

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی عمران ، دانشکده فنی، دانشگاه ارومیه، ارومیه، ایران.

چکیده

آبشستگی پایین‌دست شیب‌شکن قائم می‌تواند یکی از عوامل ناپایداری و خرابی این سازه باشد. در تحقیق حاضر، عمق آبشستگی پایین‌دست شیب‌شکن قائم با استفاده از روش ماشین بردار پشتیبان (SVM) پیش‌بینی شده است. بدین ‌منظور، برای تخمین عمق آبشستگی پایین‌دست شیب‌شکن قائم، 104 داده‌ی آزمایشگاهی مختلف مورد استفاده قرار گرفته ‌است. این داده‌ها تابعی از دو پارامتر بی‌بُعدِ عدد فرود ذرات رسوبی (Frj) و عمق نسبی پایاب (yt/yj) می‌باشند که در سه مدل متفاوت وارد شبکه ماشین بردار پشتیبان شده‌اند. جهت ارزیابی نتایج حاصل، معیارهای ارزیابی ضریب تعیین (R2)، جذر میانگین مربعات نرمال‌سازی شده خطاها (NRMSE)، ضریب کارایی (DC) و میانگین قدر مطلق خطای نسبی (MARE) به کار برده شده‌اند. نتایج نشان داده که مدل شماره (1) با ترکیب ورودی (Frj و yt/yj) با داده‌های آماری R2=0.9777، DC=0.929، NRMSE=0.0775 و MARE=%11.89 برای مرحله‌ی آزمون منجر به حصول بهترین نتیجه می‌شود و روش ماشین بردار‌ پشتیبان نیز در تخمین عمق نسبی آبشستگی از دقتی مناسب، نتایجی مقبول و عملکردی مطلوب برخوردار است. همچنین، مشخص شد که عدد فرودِ ذره رسوبی تأثیر بیشتری بر تخمین عمق نسبی آبشستگی در مقایسه با عمق نسبی پایاب دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of the Downstream Scour Depth of Vertical Drop Using the Support Vector Machine (SVM) Algorithm

نویسندگان [English]

  • Hossein Mohammadnezhad
  • Mirali Mohammadi
  • Mohammad Bagherzadeh
Department of Civil Engineering, Faculty of Engineering, Urmia University, Urmia, Iran.
چکیده [English]

The downstream scour of the vertical drop can be one of the causes of instability and failure of this structure. In the present study, the downstream scour depth of this structure predicted using the support vector machine (SVM) method. For this purpose, 104 experimental data used to estimate the scour depth. hese data are a function of the two dimensionless parameters of dansimetric Froude number (Frj) and tailwater depth (yt / yj) that have been entered into the SVM in three different models. To evaluate the results, the evaluation criteria of R2, NRMSE, DC, and MARE used. The results showed that model number (1) with the input combination (Frj and yt / yj) with R2 = 0.9777, DC = 0.929, NRMSE = 0.0775, and MARE = 11.89% for the test stage leads to the best result. The SVM method also has appropriate accuracy, acceptable results, and desirable performance in estimating the scour depth. Also, it was found that the densimetric froude number has a greater effect on estimating the relative scour depth compared to the tailwater depth.

کلیدواژه‌ها [English]

  • Scour Depth
  • Vertical Drop
  • Support Vector Machine
  • Tailwater Depth
  • Densimetric Froude Number
[1] Daneshfaraz, R., Majedi-Asl, M., Mortazavi, S., & Bagherzadeh, M. (2022). Laboratory evaluation of energy dissipation in the combined structure of the vertical drop with gabion, Civil Infrastructure Researches, 8(1), 145-157. doi: 10.22091/cer.2022.7720.1344 [In Persian]
[2] Bakhmeteff, M.W. (1932). Hydraulics of open channels, New York and London, McGraw-Hill book No. 627.13 B34.
[3] Rand, W. (1955). Flow geometry at straight drop spillways, In Proceedings of the American Society of Civil Engineers, 81(9), 1-13.
[4] Gill, M. A. (1979). Hydraulics of rectangular vertical drop structures, Journal of Hydraulic Research, 17(4), 289-302. doi: 10.1080/00221688009499542
[5] Rajaratnam, N., & Chamani, M. R. (1995). Energy loss at drops, Journal of Hydraulic Research, 33(3), 373-384. doi: 10.1080/00221689509498578
[6] Esen, I. I., Alhumoud, J. M., & Hannan, K. A. (2004). Energy loss at a drop structure with a step at the base, Water international, 29(4), 523-529. doi: 10.1080/02508060408691816
[7] Hong, Y. M., Huang, H. S., & Wan, S. (2010). Drop characteristics of free-falling nappe for aerated straight-drop spillway, Journal of Hydraulic Research, 48(1), 125-129. doi: 10.1080/00221680903568683
[8] Liu, S. I., Chen, J. Y., Hong, Y. M., Huang, H. S., & Raikar, R. V. (2014). Impact characteristics of free over-fall in pool zone with upstream bed slope, Journal of Marine Science and Technology, 22(4), 476-486. doi: 10.6119/JMST-013-0604-1
[9] Robinson, K. M., Hanson, G. J., & Cook, K. R. (2002). Scour below an overfall: Part I. Investigation, Transactions of the ASAE, 45(4), 949-956. doi: 10.13031/2013.9947
[10] Dey, S., & Raikar, R. V. (2007). Scour below a high vertical drop, Journal of Hydraulic Engineering, 133(5), 564-568. doi: 10.1061/(ASCE)0733-9429(2007)133:5(564)
[11] Ghodsian, M., Mehraein, M., & Ranjbar, H. R. (2012). Local scour due to free fall jets in non-uniform sediment, Scientia Iranica, 19(6), 1437-1444. doi: 10.1016/j.scient.2012.10.008
[12] Emiroglu, M. E., & Tuna, M. C. (2011). The effect of tailwater depth on the local scour downstream of stepped-chutes, KSCE Journal of Civil Engineering, 15(5), 907-915. doi: 10.1007/s12205-011-0921-6
[13] Chen, J. Y., Hsu, H. H., & Hong, Y. M. (2016). The influence of upstream slope on the local scour at drop structure, Journal of Mountain Science, 13(12), 2237-2248. doi: 10.1007/s11629-015-3790-5
[14] Maleki, S., & Fiorotto, V. (2019). Scour due to a Falling Plane Jet: A Comprehensive Approach, Journal of Hydraulic Engineering, 145(4), 04019008. doi: 10.1061/(ASCE)HY.1943-7900.0001564
 
[15] Akib, S., Mohammadhassani, M., & Jahangirzadeh, A. (2014). Application of ANFIS and LR in prediction of scour depth in bridges, Computers & Fluids, 91, 77-86. doi: 10.1016/j.compfluid.2013.12.004
[16] Roushangar, K., & Koosheh, A. (2015). Evaluation of GA-SVR method for modeling bed load transport in gravel-bed Rivers, Journal of Hydrology, 527, 1142-1152. doi: 10.1016/j.jhydrol.2015.06.006
[17] Hoang, N. D., Liao, K. W., & Tran, X. L. (2018). Estimation of scour depth at bridges with complex pier foundations using support vector regression integrated with feature selection, Journal of Civil Structural Health Monitoring, 8(3), 431-442. doi: 10.1007/s13349-018-0287-2
[18] Naderpour, H., Rafiean, A. H., & Fakharian, P. (2018). Compressive strength prediction of environmentally friendly concrete using artificial neural networks, Journal of Building Engineering, 16, 213-219. doi: 10.1016/j.jobe.2018.01.007
[19] Majedi-Asl, M., Daneshfaraz, R., Fuladipanah, M., Abraham, J., & Bagherzadeh, M. (2020). Simulation of bridge pier scour depth base on geometric characteristics and field data using support vector machine algorithm, Journal of Applied Research in Water and Wastewater, 7(2), 137-143. doi: 10.22126/arww.2021.5747.1189
[20] Daneshfaraz, R., Bagherzadeh, M., Esmaeeli, R., Norouzi, R., & Abraham, J. (2021). Study of the performance of support vector machine for predicting vertical drop hydraulic parameters in the presence of dual horizontal screens, Water Supply, 21(1), 217-231. doi: 10.2166/ws.2020.279 
[21] Daneshfaraz, R., Aminvash, E., Ghaderi, A., Abraham, J., & Bagherzadeh, M. (2021b). SVM performance for predicting the effect of horizontal screen diameters on the hydraulic parameters of a vertical drop, Applied sciences, 11(9), 4238. doi: 10.3390/app11094238
[22] Bagherzadeh, M., Mousavi, F., Manafpour, M., Mirzaee, R., & Hoseini, K. (2022). Numerical simulation and application of soft computing in estimating vertical drop energy “dissipation with horizontal serrated edge”, Water Supply, 22(4), 4676-4689. doi: 10.2166/ws.2022.127
[23] Asadi, M. E., Naeeni, S. T. O., & Kerachian, R. (2022). The effects of splitters on the downstream scour hole of overflow spillways: application of support vector regression, Water Supply, 22(2), 1905-1929. doi: 10.2166/ws.2021.310 
[24] Roushangar, K., Alami, M. T., Shiri, J., & Asl, M. M. (2018). “Determining discharge coefficient of labyrinth and arced labyrinth weirs using support vector machine”, Hydrology Research, 49(3), 924-938. doi: 10.2166/nh.2017.214 
[25] Vapnik, V. (1998). Statistical learning theory Wiley. New York, 1, ISBN: 978-0-471-03003-4.
[26] Dasineh, M., Ghaderi, A., Bagherzadeh, M., Ahmadi, M., & Kuriqi, A. (2021). “Prediction of Hydraulic Jumps on a Triangular Bed Roughness Using Numerical Modeling and Soft Computing Methods”, Mathematics, 9(23), 31-35. doi: 10.3390/math9233135
[27] Breiman, L. (1999). Random forests; uc berkeley tr567. University of California: Berkeley, CA, USA.
CAPTCHA Image