الگوی بزرگنمایی سطح زمین در حضور ناهمگنی‌ دایره‌ای زیرسطحی در برابر امواج مهاجمSH

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، دانشکده فنی مهندسی، دانشگاه آزاد اسلامی واحد زنجان.

2 دانشجوی کارشناسی ارشد ژئوتکنیک، دانشکده فنی مهندسی، دانشگاه آزاد اسلامی واحد زنجان.

چکیده

در این مقاله الگوی بزرگنمایی و پاسخ لرزه‌ای سطح زمین در حضور ناهمگنی دایره‌ای زیرسطحی در برابر امواج مهاجم مایل SH ارایه شده است. برای مدلسازی این عارضه از روش اجزای مرزی نیم‌صفحه در حوزه‌ی زمان استفاده شده است. مبتنی بر روش مزبور تنها لازم است وجه میانی ناهمگنی با فضای پیرامون گسسته‌سازی شود. عدم گسسته‌سازی سطح صاف زمین و دوری از مرزهای حصاری دوردست در مدل، وجه تمایز مطالعه‌ی حاضر با تحقیقات پیشین اجزای مرزی در حوزه‌ی زمان محسوب می‌شود. پس از عددی‌سازی روش مزبور در یک الگوریتم جامع رایانه‌ای، نتایج حاصل با برخی پاسخ‌های موجود در ادبیات فنی صحت‌سنجی شده است. در نهایت با در نظر گرفتن پارامترهای کلیدی از قبیل زاویه موج مهاجم، عمق استقرار ناهمگنی، موقعیت افقی و نسبت امپدانس دو محیط، به تحلیل حساسیت و حصول حداکثر بزرگنمایی سطح زمین به صورت نگاشت‌های دوبعدی و سه‌بعدی اقدام شده است. نتایج نشان می‌دهد پاسخ لرزه‌ای سطح زمین متأثر از کلیه پارامترهای مزبور می‌باشد. از نتایج این تحقیق می‌توان پیرامون موضوع ساخت محیط‌های امن، پدافند غیرعامل و همچنین در تکمیل و تدقیق آیین ‌نامه‌های لرزه‌ای موجود بهره جست.

کلیدواژه‌ها


عنوان مقاله [English]

Amplification pattern of the ground surface including underground circular inclusion subjected to incident SH-waves

نویسندگان [English]

  • Mehdi Panji 1
  • Farshid Yasemi 2
1 Assistant Professor, Department of Civil Engineering, Islamic Azad University of Zanjan.
2 M.Sc. Student, Department of Civil Engineering, Islamic Azad University of Zanjan.
چکیده [English]

In this paper, amplification pattern of the ground surface was presented in the presence of an underground circular inclusion by a half-plane time-domain boundary element method (BEM). Based on the mentioned method, it was required that only the interface was discretized to create the inclusion model. Avoiding from discretizing the smooth ground surface as well as enclosing boundaries were the distinguished advantages of the present study compared with traditional BEM studies. After implementing the method in a general computer algorithm, the results were verified compared to existing literature responses. Finally, with considering some intended parameters including incident wave angle, inclusion depth, horizontal location and impedance ratio, a sensitivity analysis was carried out to obtain the maximum amplification of the surface. The results showed that seismic ground response was affected from all these parameters. The results can be used about creating safe domains, passive defense topic and also validating seismic codes.

کلیدواژه‌ها [English]

  • half-plane BEM
  • time-domain
  • circular inclusion
  • SH-wave
  • surface response

[1] پنجی، م.، کمالیان، م.، عسگری مارنانی، ج.، جعفرکاظم، م.ک. (1391)."مروری بر ادبیات فنی تحلیل لرزه‎‌ای عوارض توپوگرافی تحت امواج مهاجم "SH، پژوهش‌نامه زلزله‌شناسی و مهندسی زلزله، دوره 15، شماره 4، ش.ص. 21-35.

[2] Simons, D. A. (1980). “Scattering of SH waves by thin, semi-infinite inclusions”, International Journal of Solids and Structures16(2), 177-192..

[3] Varadan, V. K., & Varadan, V. V. (1979). “Frequency dependence of elastic (SH-) wave velocity and attenuation in anisotropic two phase media”, Wave Motion1(1), 53-63.

[4] Wang, Y. S., & Wang, D. (1996). “Scattering of elastic waves by a rigid cylindrical inclusion partially debonded from its surrounding matrix—I. SH case”, International journal of solids and structures33(19), 2789-2815.

[5] Doyum, A. B., & Erdogan, F. (1991). “An elastic half-space containing a flat inclusion under a harmonic surface load”, Journal of sound and vibration147(1), 13-37.

[6] Baganas, K., Charalambopoulos, A., & Manolis, G. D. (2005). “Detection of spherical inclusions in a bounded, elastic cylindrical domain”, Wave motion41(1), 13-28.

[7] Manoogian, M. E., & Lee, V. W. (1996). “Diffraction of SH-waves by subsurface inclusions of arbitrary shape”, Journal of Engineering Mechanics122(2), 123-129.

[8] Imhof, M. G. (2004). “Computing the elastic scattering from inclusions using the multiple multipoles method in three dimensions”, Geophysical Journal International156(2), 287-296.

[9] Kanaun, S., & Levin, V. (2013). “Scattering of elastic waves on a heterogeneous inclusion of arbitrary shape: An efficient numerical method for 3D-problems”, Wave Motion50(4), 687-707.

[10] Lee, J., Lee, H., & Jeong, H. (2016). “Numerical analysis of SH wave field calculations for various types of a multilayered anisotropic inclusion”, Engineering Analysis with Boundary Elements64, 38-67.

[11] Nakasone, Y., Nishiyama, H., & Nojiri, T. (2000). “Numerical equivalent inclusion method: a new computational method for analyzing stress fields in and around inclusions of various shapes”, Materials Science and Engineering: A285(1), 229-238.

[12] Chen, M. C., & Ping, X. C. (2009). “A novel hybrid finite element analysis of inplane singular elastic field around inclusion corners in elastic media”, International Journal of Solids and Structures46(13), 2527-2538.

[13] Parvanova, S. L., Vasilev, G. P., Dineva, P. S., & Manolis, G. D. (2016). “Dynamic analysis of nano-heterogeneities in a finite-sized solid by boundary and finite element methods”, International Journal of Solids and Structures80, 1-18.

[14] Beskos, D. E. (1997). “Boundary element methods in dynamic analysis: Part II (1986–1996) ”, Appl. Mech. Rev50(3), 149-197.

[15] Dominguez, J., & Meise, T. (1991). “On the use of the BEM for wave propagation in infinite domains”, Engineering Analysis with Boundary Elements8(3), 132-138.

[16] Panji, M., Asgari Marnani, J., & Tavousi Tafreshi, S. (2012). “Evaluation of effective parameters on the underground tunnel stability using BEM”, Journal of Structural Engineering and Geo-Techniques, 29-37.

[17] Panji, M., Koohsari, H., Adampira, M., Alielahi, H., & Marnani, J. A. (2016). “Stability analysis of shallow tunnels subjected to eccentric loads by a boundary element method”, Journal of Rock Mechanics and Geotechnical Engineering8(4), 480-488.

[18] Hadley, P.K., Askar, A., & Calmak, A.S. (1989), “Scattering of waves by inclusions in a nonhomogeneous elastic half space solved by boundary element methods”, Technical Report NCEER-89-0027.

[19] Rus, G., & Gallego, R. (2005). “Boundary integral equation for inclusion and cavity shape sensitivity in harmonic elastodynamics”, Engineering analysis with boundary elements29(1), 77-91.

[20] Dravinski, M., & Yu, M. C. (2011). “Scattering of plane harmonic SH waves by multiple inclusions”, Geophysical Journal International186(3), 1331-1346.

[21] Dravinski, M., & Sheikhhassani, R. (2013). “Scattering of a plane harmonic SH wave by a rough multilayered inclusion of arbitrary shape”, Wave Motion50(4), 836-851.

[22] Parvanova, S. L., Dineva, P. S., Manolis, G. D., & Kochev, P. N. (2014). “Dynamic response of a solid with multiple inclusions under anti-plane strain conditions by the BEM”, Computers & Structures139, 65-83.

[23] Sheikhhassani, R., & Dravinski, M. (2016). “Dynamic stress concentration for multiple multilayered inclusions embedded in an elastic half-space subjected to SH-waves”, Wave Motion62, 20-40.

[24] Dong, C. Y., Lo, S. H., & Cheung, Y. K. (2004). “Numerical solution for elastic half-plane inclusion problems by different integral equation approaches”, Engineering analysis with boundary elements28(2), 123-130.

[25] Panji, M., & Ansari, B. (2017). “Modeling pressure pipe embedded in two-layer soil by a half-plane BEM”, Computers and Geotechnics81, 360-367.

[26] Ba, Z., & Yin, X. (2016). “Wave scattering of complex local site in a layered half-space by using a multidomain IBEM: incident plane SH waves”, Geophysical Journal International205(3), 1382-1405.

[27] Kamalian, M., Jafari, M. K., Sohrabi-Bidar, A., Razmkhah, A., & Gatmiri, B. (2006). “Time-domain two-dimensional site response analysis of non-homogeneous topographic structures by a hybrid BE/FE method”, Soil Dynamics and Earthquake Engineering26(8), 753-765.

[28] Kamalian, M., Jafari, M. K., Sohrabi-Bidar, A., & Razmkhah, A. (2008). “Seismic response of 2-D semi-sine shaped hills to vertically propagating incident waves: amplification patterns and engineering applications”, Earthquake Spectra24(2), 405-430.

[29] Panji, M., Kamalian, M., Marnani, J. A., & Jafari, M. K. (2013). “Transient analysis of wave propagation problems by half-plane BEM”, Geophysical Journal International194(3), 1849-1865.

[30] پنجی، م.، کمالیان، م.،عسگری مارنانی، ج.، جعفری، م.ک.، (1392)، "الگوی بزرگ‌نمایی دره‌های نیم‌سینوس در برابر امواج مهاجم قائم SH"، روش‌های عددی در مهندسی، 1392، دوره 32، شماره 2، ش.ص. 78-111.

[31] Panji, M., Kamalian, M., Asgari Marnani, J., & Jafari, M. K. (2014). “Analysing seismic convex topographies by a half-plane time-domain BEM”, Geophysical Journal International197(1), 591-607.

[32] Panji, M., Kamalian, M., Asgari Marnani, J., & Jafari, M. K. (2014). “Antiplane seismic response from semi-sine shaped valley above embedded truncated circular cavity: a time-domain half-plane BEM”, International Journal of Civil Engineering, Transaction B: Geotechnical Engineering12(2), 193-206.

[33] پنجی، م.، فخرآور، ا.ع.، (1396)، "الگوی بزرگ‌نمایی لرزه‌ای سطح زمین در حضور تونل زیرزمینی نعل‌اسبی تحت امواج مهاجم SH"، پژوهش‌نامه زلزله شناسی و مهندسی زلزله، دوره 4، شماره 2، ش.ص. 46-66 .

[34] Feng, Y. D., Wang, Y. S., & Zhang, Z. M. (2003). “Transient scattering of SH waves from an inclusion with a unilateral frictional interface—a 2D time domain boundary element analysis”, International Journal for Numerical Methods in Biomedical Engineering19(1), 25-36.

[35] Huang, Y., Crouch, S. L., & Mogilevskaya, S. G. (2005). “A time domain direct boundary integral method for a viscoelastic plane with circular holes and elastic inclusions”, Engineering analysis with boundary elements29(7), 725-737.

[36] Mykhas’kiv, V. (2005). “Transient response of a plane rigid inclusion to an incident wave in an elastic solid”, Wave motion41(2), 133-144.

[37] Eringen, A. C. (1975). Elastodynamics. vol. 2, linear theory. Academic Press.

[38] Brebbia, C.A., Dominguez, J., (1989). Boundary elements an introductory course. Southampton. Boston: Computational Mechanics Publications

[39] Dominguez, J., (1993). Boundary elements in dynamics. Southampton, Boston: Computational Mechanics Publications.

[40] Reinoso, E., Wrobel, L. C., & Power, H. (1993). “Preliminary results of the modelling of the Mexico City valley with a two-dimensional boundary element method for the scattering of SH waves”, Soil Dynamics and Earthquake Engineering12(8), 457-468.

[41] Ricker, N. (1953). “The form and laws of propagation of seismic wavelets”, Geophysics18(1), 10-40.

CAPTCHA Image