ارزیابی اثر ضربه سازه‌های مجاور بر ساختمان مجهز به جداساز لرزه‌ای اصطکاکی قوسی با فواصل لرزه‌ای طبق نشریه 360 تحت حرکت نزدیک گسل

نوع مقاله : مقاله پژوهشی

نویسندگان

مرکز مطالعات مخاطرات طبیعی، دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

هدف این مقاله، بررسی اثر ضربه ساختمان مجاور بر پاسخ‌های ساختمان جداسازی شده لرزه‌ای با جداسازهای آونگی‌اصطکاکی دو و سه‌قوسی با در نظر گرفتن فواصل لرزه‌ای دستورالعمل بهسازی لرزه‌ای ساختمان‌های موجود (نشریه شماره 360) است. بررسی کفایت فواصل لرزه‌ای محاسبه ‌شده طبق نشریه 360 برای ساختمان‌های جداسازی شده با جداسازهای اصطکاکی قوسی در پژوهش‌های پیشین انجام نشده است. برای رسیدن به این هدف، ابتدا مدل سه‌بعدی ساختمان‌های جداسازی شده در دو حالت با برخورد به سازه مجاور و بدون برخورد ایجاد شد. برای هریک از مدل‌های ذکر شده، 6 جداساز آونگی‌اصطکاکی دوقوسی و 15 جداساز آونگی‌اصطکاکی سه‌قوسی با ابعاد و ضرایب اصطکاک متفاوت، جهت در نظر گرفتن گستره‌ای مناسب از دوره تناوب‌ها به‌کار برده شد. سپس از روش تحلیل تاریخچه زمانی غیرخطی برای محاسبه پاسخ‌های لرزه‌ای مدل‌ها استفاده گردید. بدین منظور، هفت شتابنگاشت از پایگاه داده معتبر انتخاب و به ساختمان‌ها اعمال شد. پاسخ‌های لرزه‌ای هریک از مدل‌ها شامل شتاب طبقات، جابه‌جایی بیشینه سیستم جداسازی، جابه‌جایی نسبی بین طبقات و برش پایه سازه محاسبه و تحلیل شد. نتایج نشان می‌دهد ضربه لرزه‌ای، برخی پاسخ‌ها را به میزان قابل‌توجهی افزایش داده است. به عنوان مثال، شتاب طبقه و تغییرمکان نسبی بین طبقه‌ای برای ساختمان با جداساز سه‌قوسی بر اثر ضربه به ترتیب 2 و 6 برابر شده است. در نتیجه، ممکن است مقدار فواصل لرزه‌ای محاسبه ‌شده براساس نشریه 360 کافی نباشد و باعث ایجاد ضربه و افزایش پاسخ‌های ساختمان به میزان قابل‌توجهی گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Near-Field Earthquake-Induced Pounding in Building with Friction Pendulum Bearing Considering Seismic Gap of 360 Standard

نویسندگان [English]

  • Ayoub Shakouri
  • Gholamreza Ghodrati Amiri
  • Ali Asghar Kaviani
Natural Disasters Prevention Research Center, Iran University of Science and Technology, Tehran, Iran.
چکیده [English]

In this paper, the effect of seismic pounding of adjacent structures on buildings isolated by double (DFPB) and triple friction pendulum bearings (TFPB) is investigated. The seismic gaps between buildings are calculated based on the Instruction for Seismic Rehabilitation of Existing Buildings, standard No. 360 of Iran, which is not considered for friction pendulum bearings in the previous studies. To this end, a three-dimensional single-story building model is created in the MATHLAB program considering two scenarios including the case without pounding and the case with it. In addition, fifteen different TFPBs and six DFPBs are utilized as seismic isolators to cover a wide range of fundamental periods of the isolation system. Finally, nonlinear time history analyses with seven pairs of ground motion records are conducted to obtain some of the seismic responses of buildings including base shear, drift, story acceleration and maximum displacement of the isolation system. The results show that the seismic pounding considerably increases responses of base-isolated buildings. For example, the floor acceleration and the drift ratio of isolated building with TFPB increased 2 and 6 fold because of seismic pounding. It shows that the seismic gaps calculated by the formula of standard No. 360 may not be sufficient to prevent severe seismic poundings and increase of seismic responses.

کلیدواژه‌ها [English]

  • Base Isolation
  • Seismic pounding
  • Double and Triple Friction Pendulum Bearing
  • The 360 Standard
  • Nonlinear Time History Analysis
[1] Raheem, S. E. A. (2014). Mitigation measures for earthquake induced pounding effects on seismic performance of adjacent buildings. Bullin of Earthquake Engineering, 12(4), 1705-1724. doi: 10.1007/s10518-014-9592-2
[2] Elwardany, H., Seleemah, A., & Jankowski, R. (2017). Seismic pounding behavior of multi-story buildings in series considering the effect of infill panels. Engineering Structures, 144, 139-150. doi: 10.1016/j.engstruct.2017.01.078
[3] Stanikzai, M. H., Elias, S., Matsagar, V. A., & Jain, A. K. (2019). Seismic response control of base‐isolated buildings using multiple tuned mass dampers. The Structural Design of Tall and Special Buildings, 28(3), e1576. doi: 10.1002/tal.1576
[4] Tsai, H. C. (1997). Dynamic analysis of base‐isolated shear beams bumping against stops. Earthquake engineering & structural dynamics, 26(5), 515-528. doi: 10.1002/(SICI)1096-9845(199705)26:5%3C515::AID-EQE654%3E3.0.CO;2-C
[5] Matsagar, V. A., & Jangid, R. S. (2003). Seismic response of base-isolated structures during impact with adjacent structures. Engineering Structures, 25(10), 1311-1323. doi: 10.1016/S0141-0296(03)00081-6
[6] Komodromos, P., Polycarpou, P. C., Papaloizou, L., & Phocas, M. C. (2007). Response of seismically isolated buildings considering poundings. Earthquake Engineering & Structural Dynamics, 36(12), 1605-1622. doi: 10.1002/eqe.692
[7] Polycarpou, P. C., & Komodromos, P. (2010). Earthquake-induced poundings of a seismically isolated building with adjacent structures. Engineering Structures, 32(7), 1937-1951. doi: 10.1016/j.engstruct.2010.03.011
[8] Masroor, A., & Mosqueda, G. (2012). Experimental simulation of base‐isolated buildings pounding against moat wall and effects on superstructure response. Earthquake Engineering & Structural Dynamics, 41(14), 2093-2109. doi: 10.1002/eqe.2177
[9] Khoshnoudian, F., & Hemmati T, A. (2014), Impact of structures with double concave friction pendulum bearings on adjacent structures, Proceedings of the Institution of Civil Engineers-Structures and Buildings, 167(1), 41-53. doi: 10.1680/stbu.12.00001
[10] Mavronicola, E. A., Polycarpou, P. C., & Komodromos, P. (2017). Spatial seismic modeling of base‐isolated buildings pounding against moat walls: effects of ground motion directionality and mass eccentricity. Earthquake engineering & structural dynamics, 46(7), 1161-1179. doi: 10.1002/eqe.2850
[11] Amiri, G. G., Shakouri, A., Veismoradi, S., & Namiranian, P. (2017). Effect of seismic pounding on buildings isolated by triple friction pendulum bearing. Earthquakes and Structures, 12(1), 35-45. doi: 10.12989/eas.2017.12.1.035
[12] Shakouri, A., Amiri, G. G., Miri, Z. S., & Lak, H. R. (2021). Seismic poundings of multi-story buildings isolated by TFPB against moat walls. Earthquakes and Structures, 20(3), 295-307. doi: 10.12989/eas.2021.20.3.295
[13] Mazza, F., & Labernarda, R. (2022). Effects of near‐fault acceleration and non‐acceleration pulses on pounding between in‐plan irregular fixed‐base and base‐isolated buildings. Structural Control and Health Monitoring, 29(9), e2992. doi: 10.1002/stc.2992
[14] Vice Presidency for Strategic Planning and Supervision. (2014). Instruction for Seismic Rehabilitation of Existing Buildings (Code No. 360). Tehran, Iran. [In Persian]
[15] Shakouri, A., Amiri, G. G., & Salehi, M. (2021). Effects of ductility and connection design on seismic responses of base-isolated steel moment-resisting frames. Soil Dynamics and Earthquake Engineering, 143, 106647. doi: 10.1016/j.soildyn.2021.106647 
[16] Hosseini, P., Hosseini, M., & Omranizadeh, S. M. (2019). The Effect of Height of Structure on the Accuracy of Nonlinear Static Analysis Methods in Steel Structures with Lead Rubber Bearing (LRB) Base Isolators. Civil Infrastructure Researches, 5(1), 35-49. doi: 10.22091/cer.2019.4899.1180 [In Persian]
[17] Jalali, Y., Amiri, G. G., & Shakouri, A. (2021). Comparative response assessment of base-isolated braced-frame buildings considering effects of ductility design. Journal of Building Engineering, 43, 103110. doi: 10.1016/j.jobe.2021.103110
[18] Hamidia, M., Toozandejani, F., & Mahdavian, A. (2022). Evaluation of ASCE7 simplified procedure for estimating maximum seismic displacement of structures with friction pendulum isolators under near-field earthquakes. Civil Infrastructure Researches, 7(2), 145-156. doi: 10.22091/cer.2021.7377.1300 [In Persian]
[19] Fenz, D. M. (2008). Development, implementation and verification of dynamic analysis models for multi-spherical sliding bearings. PhD Thesis, University of buffalo.
[20] Papadrakakis, M., Mouzakis, H., Plevris, N., & Bitzarakis, S. (1991). A Lagrange multiplier solution method for pounding of buildings during earthquakes. Earthquake engineering & structural dynamics, 20(11), 981-998. doi: 10.1002/eqe.4290201102
[21] Malhotra, P. K. (1998). Dynamics of seismic pounding at expansion joints of concrete bridges. Journal of Engineering Mechanics, 124(7), 794-802. doi: 10.1061/(ASCE)0733-9399(1998)124:7(794)
[22] DesRoches, R., & Muthukumar, S. (2002). Effect of pounding and restrainers on seismic response of multiple-frame bridges. Journal of Structural Engineering, 128(7), 860-869. doi: 10.1061/(ASCE)0733-9445(2002)128:7(860)
[23] Anagnostopoulos, S. A. (1988). Pounding of buildings in series during earthquakes. Earthquake engineering & structural dynamics, 16(3), 443-456. doi: 10.1002/eqe.4290160311
[24] Anagnostopoulos, S. A. (2004). Equivalent viscous damping for modeling inelastic impacts in earthquake pounding problems. Earthquake Engineering & Structural Dynamics, 33(8), 897-902. doi: 10.1002/eqe.377
[25] Pant, D. R., Wijeyewickrema, A. C., & Ohmachi, T. (2010). Seismic pounding between reinforced concrete buildings: A study using two recently proposed contact element models. Proceedings of the 14ECEE, Ohrid, Macedonia.
[26] Mahmoud, S., & Jankowski, R. (2011). Modified linear viscoelastic model of earthquake-induced structural pounding. Iranian Journal of Science and Technology Transactions of Civil Engineering, 35(1), 51-62. doi: 10.22099/IJSTC.2012.656
[27] Muthukumar, S., & DesRoches, R. (2006). A Hertz contact model with non‐linear damping for pounding simulation. Earthquake engineering & structural dynamics, 35(7), 811-828. doi: 10.1002/eqe.557
CAPTCHA Image