مقایسه ضریب مقیاس رکوردهای زلزله طبق آیین‌نامه‌های طراحی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، واحد سمنان، دانشگاه آزاد اسلامی، سمنان، ایران.

2 گروه مهندسی عمران، واحد سمنان، دانشگاه آزاد اسلامی، سمنان، ایران

چکیده

امروزه با توجه به افزایش تعداد زمین‌لرزه‌ها و همچنین رشد جمعیت و پیشرفت صنعت ساختمان‌سازی در مناطق شهری و روستایی، طراحی ساختمان‌ها در مقابل نیروهای وارده به‌ویژه نیروی زلزله مورد توجه مهندسین قرار گرفته است. بنابراین برای تأمین ایمنی جانی و مالی باید ساختما‌ها عملکرد مناسبی در برابر بارهای وارده داشته باشند. با توجه به پژوهش‌های انجام شده تاکنون اثر مقیاس‌سازی بر رکوردهای دور یا نزدیک در ساختمان‌ها انجام شده یا اینکه تنها دریفت (تغییرمکان نسبی) ساختمان‌ها مورد بررسی قرار گرفته است. اما در این پژوهش، ضریب مقیاس رکوردهای حوزه دور و نزدیک همزمان برای چهار آیین‌نامه 2800 ویرایش چهارم، ASCE07، IBC و UBC در برنامه SAP2000 بررسی شده است. از سه ساختمان (4، 7 و10 طبقه) برای تحلیل ساختمان‌ها به عنوان نماینده ساختمان‌های (کوتاه‌مرتبه، میان‌مرتبه و بلندمرتبه) استفاده شده است. پس از تحلیل تاریخچه زمانی غیرخطی ساختمان‌ها نسبت دریفت و نحوه تشکیل مفاصل پلاستیک در ساختمان‌ها نیز نشان داده شده است. نتایج تحلیل نشان می‌دهد برای ساختمان‌های بالای هفت طبقه استفاده هریک از آیین‌نامه‌های طراحی در برابر بارهای جانبی بلامانع است، چراکه نتایج به‌دست آمده از آیین‌نامه‌ها بسیار نزدیک می‌باشد. به‌طوری که 9 تا 23 درصد کاهش تفاوت در مقادیر به‌دست آمده از آیین‌نامه‌ها را نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Scaling of Ground Motion Records Based on Seismic Design Standards and Regulations

نویسندگان [English]

  • Alireza Mortezaei 1
  • Mahdi Golpayegani 2
  • Hila Bahari 2
1 Civil Engineering Department, Semnan Branch, Islamic Azad University, Semnan, Iran
2 Civil Engineering Department, Semnan Branch, Islamic Azad University, Semnan, Iran
چکیده [English]

Today by increasing of earthquakes and population growth and development of building industry in city or country areas, building designing against applied loads especially earthquake load have regarded by engineers. Also for supplying of life and financial safety, buildings should have appropriate performance against applied loads. In this research work, influence of scaling of near-fault and far-fault records have been treated in 4 codes 2800 Iran, 4th edition, ASCE07, IBC 2006 and UBC 97 Simultaneously. In this study 3 buildings have been used in 4,7 and 10 stories as indicators of low-rise and mid-rise buildings. The results show that in low-rise and mid-rise buildings Iranian earthquake code scaling has stricter rules to other regulations. By increasing of stories in tall­-building (10 story) every four regulations has their own performance and could be maximum according to the kind and characteristic of earthquake (PGA, Mw). In fact, regulation of 2800 Iran, 4th edition, requires separated scaling rules for low-rise and mid-rise buildings. Drift ratio in ASCE07-10 has decreased %94 to 2800 Iran. Also this value for IBC2006 %93 and for UBC %89 has decreased.

کلیدواژه‌ها [English]

  • Scaling
  • Nonlinear time history analysis
  • Drift ratio
  • near-fault and far-fault earthquake
[1] Rahimi, H. (2013). Investigation of Behavior and Vulnerability of Metal Buildings by Convergent Chevron Inhibition with Friction Damping of Energy Purification, MSc Thesis, Faculty of Engineering, University of Chamran martyr. [In Persian]
[2] Ghorbanpour, B., Khalil Pasha, M. H., & Jahani, Z. (2011). Study of Types of Frames and Structural Systems in Steel Buildings, The First Regional Conference on Civil Engineering, Joibar, Islamic Azad University, Joibar Branch. [In Persian]
[3] Rezaeian, S., Al Atik, L., Kuehn, N. M., Abrahamson, N., Bozorgnia, Y., Mazzoni, S., ... & Campbell, K. (2021). Spectral damping scaling factors for horizontal components of ground motions from subduction earthquakes using NGA-Subduction data. Earthquake Spectra, 37(4), 2453-2492. doi: 10.1177/87552930211027903
[4] Davarnia, D., & Farahmand Azar, B. (2020). A new method for scaling of earthquake records using input energy of structures. The Structural Design of Tall and Special Buildings, 29(9), e1736. doi: 10.1002/tal.1736
[5] Dávalos, H., & Miranda, E. (2019). Evaluation of the scaling factor bias influence on the probability of collapse using S a (T1) as the intensity measure. Earthquake Spectra, 35(2), 679-702. doi: 10.1193/011018EQS007M
[6] Watson-Lamprey, J., & Abrahamson, N. (2006). Selection of ground motion time series and limits on scaling. Soil Dynamics and Earthquake Engineering, 26(5), 477-482. doi: 10.1016/j.soildyn.2005.07.001
[7] Cavdar, E., Ozdemir, G., & Bayhan, B. (2019). Significance of ground motion scaling parameters on amplitude of scale factors and seismic response of short-and long-period structures. Earthquake Spectra, 35(4), 1663-1688. doi: 10.1193/081718eqs204m
[8] Huff, T. (2020). Importance of target spectrum basis in earthquake ground motion scaling. Practice Periodical on Structural Design and Construction, 25(1), 04019034. doi: 10.1061/(ASCE)SC.1943-5576.0000461
[9] Bahari, H., & Mortezaei, A. (2021). Influence of Geographic Scaling of Regional Ground Motions on the Moment Resisting RC buildings. Geography (Regional Planning), 11(44), 605-620. doi: 10.22034/jgeoq.2021.137388
[10] Shome, N., Cornell, C. A., Bazzurro, P., & Carballo, J. E. (1998). Earthquakes, records, and nonlinear responses. Earthquake spectra, 14(3), 469-500. doi: 10.1193/1.1586011
[11] Reyes, J. C., & Chopra, A. K. (2012). Modal pushover-based scaling of two components of ground motion records for nonlinear RHA of structures. Earthquake Spectra, 28(3), 1243-1267. doi: 10.1193/1.4000069
[12] Reyes, J. C., & Kalkan, E. (2012). How many records should be used in an ASCE/SEI-7 ground motion scaling procedure?. Earthquake Spectra, 28(3), 1223-1242. doi: 10.1193/1.4000066
[13] Reyes, J. C., & Quintero, O. A. (2014). Modal pushover‐based scaling of earthquake records for nonlinear analysis of single‐story unsymmetric‐plan buildings. Earthquake engineering & structural dynamics, 43(7), 1005-1021. doi: 10.1002/eqe.2384
[14] Ergun, M., & Ates, S. (2014). Comparing of the effects of scaled and real earthquake records on structural response. Earthquakes and Structures, 6(4), 375-392. doi: 10.12989/eas.2014.6.4.375
[15] Wang, J. H. (2018). A review on scaling of earthquake faults. Terrestrial, Atmospheric & Oceanic Sciences, 29(6), 589-610. doi: 10.3319/TAO.2018.08.19.01
[16] Melgar, D., Crowell, B. W., Geng, J., Allen, R. M., Bock, Y., Riquelme, S., ... & Ganas, A. (2015). Earthquake magnitude calculation without saturation from the scaling of peak ground displacement. Geophysical Research Letters, 42(13), 5197-5205. doi: 10.1002/2015GL064278
[17] Trugman, D. T., & Shearer, P. M. (2017). Application of an improved spectral decomposition method to examine earthquake source scaling in Southern California. Journal of Geophysical Research: Solid Earth, 122(4), 2890-2910. doi: 10.1002/2017JB013971
[18] Mortezaei, A., & Ronagh, H. R. (2013). Effectiveness of modified pushover analysis procedure for the estimation of seismic demands of buildings subjected to near-fault ground motions having fling step. Natural Hazards and Earth System Sciences, 13(6), 1579-1593. doi: 10.5194/nhess-13-1579-2013
[19] Valamanesh, V., & Estkanchi, H. (2003). Study of Criteria for Multidirectional Seismic Analysis of Structures, Journal of Civil Engineering, Islamic Azad University. [In Persian]
[20] National Building Regulations of Iran. (2021). Design and Execution of Steel Buildings, Edition 4, Office of National Building Regulations. [In Persian]
[21] Taghinezhad, R. (2015). Seismic Design and Rehabilitation of Structures Based on Performance Level With SAP2000 and ETABS Pushover Analysis. [In Persian]
[22] Iraninan Code of Practice For Seismic Resistant Design of Buldings, Standadr No.2800,(4th Edition).
[23] Abolhassani, J., & Fallahi F. (2013). Comparison between IBC, UBC and 2800 regulations in analyzing the modal spectral response performed on standard residential buildings, 7th National Congress of Civil Engineering, Shahid Nikbakht Faculty of Engineering, Zahedan. [In Persian]
[24] ASCE Standard ASCE/SEI 7. (2010). American Society of Civil Engineers–“Minimum design loads for buildings and other structures.
[25] Code, U. B. (2015). International building code. International Code Council, USA.
[26] UBC-97. (1997). In Structural engineering design provisions. International conference of building officials, Whittier, California.
[27] Jooqan, S., Badri, H., & Daneshjoo, F. (2009). Comparison of increasing nonlinear static analysis methods and productive nonlinear dynamics in steel bending frames, 8th International Congress of Civil Engineering, Shiraz University. [In Persian]
[28] Mortezaei, A. (2014). Plastic hinge length of RC columns under the combined effect of near-fault vertical and horizontal ground motions. Periodica Polytechnica Civil Engineering, 58(3), 243-253. doi: 10.3311/PPci.7329 
[29] ASCE 41-16. (2016). Minimum Design Loads for Building and Other Structures, American Society of Civil Engineers (ASCE).
CAPTCHA Image