تحلیل عددی حفر تونل‏های بزرگ‌مقطع و ارزیابی اثرات زیست‌محیطی ناشی از افت سطح آب زیرزمینی (مطالعه موردی: تونل راه‌آهن کوهین محور قزوین- رشت)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار، دانشکده مهندسی معدن و مواد، دانشگاه صنعتی ارومیه.

2 استاد، دانشکده مهندسی معدن، ژئوفیزیک و نفت، دانشگاه صنعتی شاهرود.

3 دانشکده مهندسی معدن و متالورژی، دانشگاه یزد

چکیده

امروزه یکی از چالش‌های مدیریت ایمنی فضاهای زیرزمینی درحال‌ساخت، جریان یافتن آب به داخل این تونل است. این موضوع یکی از مهم‌ترین مسائلی محسوب می‌شود که آثار مخربی بر روند عملیات حفر تونل و فعالیت‌های جنبی بعد از آن (نصب سامانه نگهداری) دارد؛ بنابراین محاسبه میزان نرخ نفوذ آب به داخل تونل به منظور پیش‌بینی تمهیدات ایمنی، قبل از شروع عملیات تونل‌زنی اهمیت به‌سزایی دارد. علاوه بر اثرات نامطلوب زیست‌محیطی ناشی از افت سطح آب زیرزمینی، رخ دادن پدیده نشست در سطح بالای تونل و سطح ایستابی و تغییر روند جریان آب زیرزمینی در منطقه، از جمله مواردی است که در صورت عدم توجه به آنها، حوادث و سوانح غیرقابل جبرانی اتفاق می‌افتد. بنابراین باید تمهیدات لازم برای کاهش وقوع این حوادث در نظر گرفته شود. در این پژوهش، اثرات نامطلوب زیست‌محیطی ایجادشده در اثر حفر تونل راه‌آهن کوهین مورد بررسی قرار گرفته است که شامل نشست زمین در سطح ایستابی و تغییر در روند جریان آب زیرزمینی در منطقه می‌شود. راهکارهایی برای کاهش این اثرات ارائه شده است که می‏توان به بازیابی سطح آب زیرزمینی با استفاده از پوشش بتنی آب‌بند بدون انجام عملیات زهکشی و به‌کارگیری همزمان روش فورپولینگ اشاره کرد. به‌کارگیری این موارد، مستلزم استفاده از پوشش بتنی با خصوصیات مقاومتی بالا جهت تحمل فشار هیدرواستاتیکی آب جمع‌شده در پشت پوشش است.




 

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the Environmental Impacts of Groundwater Levels Drop Due to the Excavation of Large-Scale Tunnels (Case Study: Kouhin Rail-Way Tunnel)

نویسندگان [English]

  • Reza Mikaeil 1
  • Mohammad Ataei 2
  • Farhang Sereshki 2
  • Amir Jafarpour 3
1 Faculty of Mining and Metallurgical Engineering, Urmia University of Technology
2 Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
3 Department of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran
چکیده [English]

Today, one of the challenges in safety management of underground excavations is the water inflow into them. The tunnels and underground constructions are causing to remove a pile of soil and rock area and significant changes in the state of tension it’s around environment. Invasion of groundwater into the excavation area is a major problem in excavation of tunnels that is located below the hydrostatic levels. The underground-water inflow into the tunnels is an important issue in the tunnel engineering. The subsidence of the ground in hydrostatic levels, reduce the aqueduct water resources and springs that are located in downstream of the tunnel, are environmental problems of the tunnel excavation operations. In the present study, the groundwater inflow into the Kouhin tunnel railway is modeling with FLAC2D software. The effects of groundwater inflows in the tunnel that while excavation are studied by numerical model. In other hands, initially investigated the adverse environmental effects caused by the Kouhin railway tunnel excavation (subsidence the ground water levels and changes in the groundwater inflow in the region) and then provide some strategies for reducing these effects. The strategies that can be used in prevention of groundwater flow into the underground tunnels are: Underground water level recovery with application of concrete sealing operations without drainage and simultaneous use of forepoling methods that to be presented as a solution to reduce environmental impact. Doing this requires using of concrete lining with high strength properties to withstand hydrostatic pressure of water collected on the back cover.

کلیدواژه‌ها [English]

  • Safety Management
  • Environmental Impact
  • Ground Subsidence
  • Groundwater Level
  • FLAC2D

[1] Roccheggiani, M., Piacentini, D., Tirincanti, E., Perissin, D., & Menichetti, M. (2019). “Detection and monitoring of tunneling induced ground movements using Sentinel-1 SAR Interferometry”, Remote Sensing11(6), 639.

[2] Gu, S. C., Sun, W., & Wang, B. (2019). “Study on the subdivision support and rapid tunneling technology of coal mine roadway”, In IOP Conference Series: Earth and Environmental Science (Vol. 242, No. 2, p. 022018). IOP Publishing.

[3] Yang, S. Y., & Yeh, H. D. (2007). “A closed‐form solution for a confined flow into a tunnel during progressive drilling in a multi‐layer groundwater flow system”, Geophysical research letters34(7).

[4] Zaidel, J., Markham, B., & Bleiker, D. (2010). “Simulating seepage into mine shafts and tunnels with MODFLOW”, Groundwater, 48(3), 390-400.

[5] Cesano, D., Olofsson, B., & Bagtzoglou, A. C. (2000). “Parameters regulating groundwater inflows into hard rock tunnels—a statistical study of the Bolmen tunnel in southern Sweden”, Tunnelling and Underground Space Technology, 15(2), 153-165.

[6] Lee, I. M., & Nam, S. W. (2001). “The study of seepage forces acting on the tunnel lining and tunnel face in shallow tunnels”, Tunnelling and Underground Space Technology, 16(1), 31-40.

[7] Tseng, D. J., Tsai, B. R., & Chang, L. C. (2001). “A case study on ground treatment for a rock tunnel with high groundwater ingression in Taiwan”, Tunnelling and Underground Space Technology, 16(3), 175-183.

[8] Shin, J. H., Addenbrooke, T. I., & Potts, D. M. (2002). “A numerical study of the effect of groundwater movement on long-term tunnel behaviour”, Geotechnique, 52(6), 391-403.

[9] Molinero, J., Samper, J., & Juanes, R. (2002). “Numerical modeling of the transient hydrogeological response produced by tunnel construction in fractured bedrocks”, Engineering Geology, 64(4), 369-386.

[10] Selroos, J. O., Walker, D. D., Ström, A., Gylling, B., & Follin, S. (2002). “Comparison of alternative modelling approaches for groundwater flow in fractured rock”, Journal of Hydrology, 257(1-4), 174-188.

[11] Maréchal, J. C., & Perrochet, P. (2003). “Nouvelle solution analytique pour l'étude de l'interaction hydraulique entre les tunnels alpins et les eaux souterraines”, Bulletin de la Société Géologique de France, 174(5), 441-448.

[12] Bonomi, T. U. L. L. I. A., & Bellini, R. O. B. E. R. T. A. (2003). “The tunnel impact on the groundwater level in an urban area: a modelling approach to forecast it”, Materials and Geoenvironment, 50, 45-48.

[13] Lee, I. M., & Nam, S. W. (2004). “Effect of tunnel advance rate on seepage forces acting on the underwater tunnel face”, Tunnelling and Underground Space Technology, 19(3), 273-281.

[14] Kolymbas, D., & Wagner, P. (2007). “Groundwater ingress to tunnels–the exact analytical solution”, Tunnelling and Underground Space Technology, 22(1), 23-27.

[15] Hwang, J. H., & Lu, C. C. (2007). “A semi-analytical method for analyzing the tunnel water inflow”, Tunnelling and Underground Space Technology, 22(1), 39-46.

[16] Li, D., Li, X., Li, C. C., Huang, B., Gong, F., & Zhang, W. (2009). “Case studies of groundwater flow into tunnels and an innovative water-gathering system for water drainage”, Tunnelling and Underground Space Technology, 24(3), 260-268.

[17] Moon, J., & Fernandez, G. (2010). “Effect of excavation-induced groundwater level drawdown on tunnel inflow in a jointed rock mass”, Engineering Geology, 110(3-4), 33-42.

[18] Zarei, H. R., Uromeihy, A., & Sharifzadeh, M. (2011). “Evaluation of high local groundwater inflow to a rock tunnel by characterization of geological features”, Tunnelling and Underground Space Technology, 26(2), 364-373.

[19] Jurado, A., De Gaspari, F., Vilarrasa, V., Bolster, D., Sánchez-Vila, X., Fernàndez-Garcia, D., & Tartakovsky, D. M. (2012). “Probabilistic analysis of groundwater-related risks at subsurface excavation sites”, Engineering Geology, 125, 35-44.

[20] Butscher, C. (2012). “Steady-state groundwater inflow into a circular tunnel”, Tunnelling and Underground Space Technology, 32, 158-167.

[21] Li, S. C., Zhou, Z. Q., Li, L. P., Xu, Z. H., Zhang, Q. Q., & Shi, S. S. (2013). “Risk assessment of water inrush in karst tunnels based on attribute synthetic evaluation system”, Tunnelling and underground space technology, 38, 50-58.

[22] Font-Capo, J., Pujades, E., Vàzquez-Suñé, E., Carrera, J., Velasco, V., & Montfort, D. (2015). “Assessment of the barrier effect caused by underground constructions on porous aquifers with low hydraulic gradient: A case study of the metro construction in Barcelona, Spain”, Engineering geology, 196, 238-250.

[23] Attard, G., Winiarski, T., Rossier, Y., & Eisenlohr, L. (2016). “Impact of underground structures on the flow of urban groundwater”, Hydrogeology journal, 24(1), 5-19.

[24] Hassani, A. N., Katibeh, H., & Farhadian, H. (2016). “Numerical analysis of steady-state groundwater inflow into Tabriz line 2 metro tunnel, northwestern Iran, with special consideration of model dimensions”, Bulletin of Engineering Geology and the Environment75(4), 1617-1627.

[25] Liu, X. X., Shen, S. L., Xu, Y. S., & Yin, Z. Y. (2018). “Analytical approach for time‐dependent groundwater inflow into shield tunnel face in confined aquifer”, International Journal for Numerical and Analytical Methods in Geomechanics, 42(4), 655-673.

[26] Yoo, C., Kim, S. B., Kim, J. W., & Yoo, K. H. (2008). “Influencing factors on groundwater drawdown induced ground settlement during tunneling”, In: World Tunneling Congress, 863-871.

[27] Pakbaz, M., & Heydarizadeh, Y. (2008). “Investigation of soil subsidence in excavation of Ahwaz urban tunnel”, 4th National Congress of Civil Engineering. University of Tehran. Tehran.

[28] National Coal Board. (1975). Subsidence Engineering Handbook. National Coal Board mining Department, London, 1975.

[29] Rostami, A.R., Rostamabadi, S.A., Hosseini, N., & Khosrowash, M. (2011). “Numerical and analytical estimating of ground subsidence and comparison with the result of observational and instrumental method (case study: second line of Karaj subway tunnel)”, Journal of Earth and Resources. 4, 3(12), 33-40.

[30] Ahmadvand, M., Azadi, M.A., & Soltani, J. (2012). “Groundwater modeling due to groundwater level drop (case study: sewage tunnel drainage of East-Tehran)”, 1th National Conference on Sustainable Development Solutions. Tehran.

[31] Honestly, B., Shahriar, K., & Khoshravan Azar, A.S. (2004). “Analytical estimation of tunneling in urban areas (case Study: first phase of Tabriz metro)”, 2nd Conference of Iranian Rock Mechanics.

[32] Setayesh, A.S. (2011). Introduction to Geosynthetics. Academic Center for Education, Culture and Research publications (Jahad-e Daneshgahi) First edition. Tehran.

[33] Mahuet, G.L. (2005). Guidelines on Waterproofing and Drainage of Underground Structures. Version 1 – approved by Technical Committee. Tunneles et Souterrains – HORS-SERIE N2.

[34] A’li Anvari, A., Katibeh, H., & Mahmoudabadi, H. (2008). “Estimation of equivalent permeability along the axis of the Amir-Kabir tunnel using artificial neural network”, 2nd Conference of Iranian Mining Engineering. University of Tehran. Tehran.

[35] Sadeghpour, A.H., & Fadaei, M. (2009). “Investigation of subsidence control methods in excavation operations adjacent to groundwater level”, 8th International Congress of Civil Engineering. Shiraz University. Shiraz.

[36] Qasemi ghodrat, M., & Kazemi, M. (2012). “Methods for controlling water entry into the tunnel and its drainage (Case study: Amir-Kabir water transmission tunnel)”, 4th Conference  of Iranian Mining Engineering. University of Tehran. Tehran.

[37] Rahimi Dizaji, M., & Pourrahimian, Y. (2006). “Study and simulation of the forepoling method in tunnel excavation”, 5th Student Conference on Mining Engineering.

[38] Dezianin, H.R., & Daray, R. (2009). “Using forepoling method for digging of 2-A part of Shibli tunnel with view on geotechnical characteristics of the tunnel site”, 6th Conference  of Iranian Geological Engineering and Environmental.

[39] Haraz Rah Consulting Engineers. (2004). 2nd report of Kouhin railway tunnel in Qazvin-Rasht-Bandar Anzali (Technical Report).

[42] Hedayat-nasab, K., Adib, A., Goshtasebi, K., & Monjezi, M. (2013). “Validation of geotechnical data of Qazvin-Rasht railway tunnel using recursive analysis of monitoring data”, Journal of Engineering Geology. 7(1), 1725-1742.

[41] Rahimi, B., Shahriar, K., & Sharifzadeh, M. (2008). “The process of selecting underground design methods”, Journal of Iranian Tunnel Association Magazine. 5, 9-17.

[42] Haraz Rah Consulting Engineers (2008). Report of the part 1 of Qazvin-Rasht railway infrastructure operation. Vol. 2. Part 2. Tunnel private technical specifications. 121 p.

[43] Haraz Rah Consulting Engineers. (2006). Number 1 report of general, tectonic and engineering geological of Qazvin-Rasht railway. (Technical Report).

CAPTCHA Image