[1] Mobasher, B., & Shah, S. P. (1989). “Test parameters for evaluating toughness of glass-fiber reinforced concrete panels”, ACI Materials Journal, 86(5), 448-458.
[2] Mobasher, B., & Li, C.Y. (1996). “Mechanical properties of hybrid cement-based composites”, ACI Mater Jour-nal, 93, 284-292.
[3] Li, V. C. (2000). “Large Volume, High-Performance Applications of Fibers in Civil Engineering”, High Perfor-mance Application of Fibers, 83(3), 660-686.
[4] Stang, H., & Li, V. (2004). “Classification of Fiber Reinforced Cementitious Material for Structural Application “, 6th RILEM Symposium of FRC, Italy.
[5] Banthia, N., & Trottier, J.F. (1995). “Test methods for flexural toughness characterization of fiber reinforced concrete: Some concerns and proposition”, ACI Mater Journal, 92, 48-57.
[6] Van Mier, J. G. M., & Van Vliet, M. A. A. (2001). “Uniaxial tensile Test of Determination of Fracture Parameters of Concrete: State of the art”, Engineering Fracture Mechanics, 69(2), 235-247.
[7] Vandewalle, L., Nemegeer, D., Balazs, L., Barr, B., Barros, J., Bartos, P., ... & Falkner, H. (2003). “RILEM TC 162-TDF: Test and design methods for steel fibre reinforced concrete'-sigma-epsilon-design method-Final Recom-mendation”, Materials and Structures, 36(262), 560-567..
[8] Zhang, J., & Stange, H. (1997). “Applications of Stress crack Opening Width Relationship in Predicting the Flex-ural Behavior of Fiber Reinforced Concrete”, Cement and Concrete research, 28(3), 439-452.
[9] Abdalla H. M., & Karihaloo, B. L. (2004). “A method for constructing the bilinear tension softening diagram of concrete corresponding to its true fracture energy”, Magazine of Concrete Research, 56(10), 597–604.
[10] Jepsen, M. S., Damkilde, L., Lövgren, I., & Berrocal, C. (2018). “Adaptive inverse analysis (AIA) applied and verified on various fiber reinforced concrete composites”, Materials and Structures, 51(3), 60.
[11] Jepsen, M. S., Damkilde, L., & Lövgren, I. (2016). “A fully general and adaptive inverse analysis method for cementitious materials”, Materials and Structures, 49(10), 4335-4348.
[12] Soranakom, C., & Mobasher, B. (2008). “Correlation of tensile and flexural responses of strain softening and strain hardening cement composites”, Cement and Concrete Composite, 30(6), 465-477.
[13] Mobasher, B., Yao, Y., & Soranakom, C. (2015). “Analytical solutions for flexural design of hybrid steel fiber reinforced concrete beams”, Engineering Structures, 100, 164-177.
[14] Barros, J. A. O., Taheri, M., & Salehian, H. (2015). “A model to simulate the moment–rotation and crack width of FRC members reinforced with longitudinal bars”, Engineering Structures, 100, 43-56.
[15] Amin, A., & Foster, S. J. (2016). “Predicting the flexural response of steel fiber reinforced concrete prisms using a sectional model”, Cement and Concrete Composites, 67, 1-11.
[16] Yoo, D.-Y., Banthia, N., & Yoon, Y.-S. (2016). “Predicting the flexural behavior of ultra-high-performance fi-ber-reinforced concrete”, Cement and Concrete Composites, 74, 71-87.
[17] Chiranjeevi Reddy, K., & Subramaniam, K. V. L. (2017). “Analysis for multi-linear stress-crack opening cohe-sive relationship: Application to macro-synthetic fiber reinforced concrete”, Engineering Fracture Mechanics, 169, 128-145.
[18] Nguyen, D. L., Thai, D. K., & Kim, D. J. (2017). “Direct tension-dependent flexural behavior of ultra-high-performance fiber-reinforced concretes”, The Journal of Strain Analysis for Engineering Design, 52(2), 121-134.
[19] Yao, Y., Bakhshi, M., Nasri, V., & Mobasher, B. (2018). “Interaction diagrams for design of hybrid fiber-reinforced tunnel segments”, Materials and Structures, 51(1), 35.
[20] Dey, V., & Mobasher, B. (2018). “Quantitative characterization of accelerated aging in cement composites using flexural inverse analysis”, Cement and Concrete Composites, 89, 181-191.
[21] Armelin, H. S., & Banthia, N. (1997). “Predicting the flexural post cracking performance of steel fiber rein-forced concrete from the pullout of single fibers”, ACI Materials Journal, 94(1), 18-31.
[22] Oh, B. H., Kim, J. C., & Choi, Y. C. (2007). “Fracture behavior of concrete members reinforced with structural synthetic fibers”, Engineering fracture Mechanics, 74(1), 243-257.
[23] Prudencio, L., Austin, S., Jones, P., Armelin, H., & Robins, P. (2006). “Prediction of steel fiber reinforced con-crete under flexure from an inferred fiber pull-out response”, Materials and Structures Journal, 39(6), 601-610.
[24] PEER/ATC 72-1 (2010), “Modeling and acceptance criteria for seismic design and analysis of tall building”. Applied Technology Council, report, 201 Redwood Shores Pkwy, Suite 240 Redwood City, California 94065.
[25] Sharifi, M., & Kamali, M. (2017). “Evaluating the Concrete Tensions Softening Model in Flexural Behavior”, International Journal of Civil Engineering, 15(5), 791-807.
[26] Kwak, H. G., & Kim, S. P. (2002). “Nonlinear analysis of RC beams based on moment–curvature relation”. Computers & Structures, 80(7), 615-628.
[27] Vandewalle, L. (2002). “Test and design methods for steel fiber reinforced concrete. Design of steel fibre rein-forced using σ-w method: principles and applications”, Materials and Structures, 35(249), 262-278.
[28] De Borst, R., Crisfield, M. A., Remmers, J. J., & Verhoosel, C. V. (2012). Nonlinear finite element analysis of solids and structures. John Wiley & Sons.
[29] Ahmadi, R., Ghoddousi, P., & Sharifi, M. (2012). “A simple solution for prediction of steel fiber reinforced con-crete behavior under flexure”, International Journal of Civil Engineering, 10(4), 274–279.
[30] Hillerborg, A., Modéer, M., & Petersson, P. E. (1976). “Analysis of crack formation and crack growth in con-crete by means of fracture mechanics and finite elements”, Cement and Concrete Research, 6(6), 773-781.
[31] Figueiras, J. A., & Owen, D. R. J. (1984). “Non–Linear Analysis of Reinforced Concrete Shell Structures”, Intl. conf. on Computer Aided Analysis and Design of Concrete Structures, Part I, Split, Yugoslavia, 509–532.
[32] Ballarini, R., Shah, S. P., & Keer, L. M. (1984). “Crack growth in cement-based composites”, Engineering Frac-ture Mechanics, 20(3), 433-445.
[33] Reinhardt, H. W. (1985). “Crack softening zone in plain concrete under static loading”, Cement and Concrete Research, 15(1), 42-52.
[34] Gopalaratnam, V. S., & Surendra, P. S. (1985). “Softening Response of Plain Concrete in Direct Tension”, Journal Proceedings, 82(3), 310-323.
[35] Cedolin, L., Poli Sandro, D., & Iori, I. (1987). “Tensile Behavior of Concrete”, Journal of Engineering Mechan-ics, 113(3), 431-449.
[36] Foote, R. M. L., Mai, Y.-W., & Cotterell, B. (1986). “Crack growth resistance curves in strain-softening materi-als”, Journal of the Mechanics and Physics of Solids, 34(6), 593-607.
[37] Du, J. J., Yon ,J. H., Hawkins, N. M., & Kobayashi, A. S. (1990). “Analysis of the fracture process zone of a propagating concrete crack using moire interferometry, in micromechanics of failure of quasi–brittle material”, Elsevier Applied Science, 146–155.
[38] Hordijk, D. A. (1991). “Local approach to fatigue of concrete”, PhD thesis, Technical University of Delft
[39] Roelfstra, R. E., & Wittmann, F. H. (1986). “A numerical method to link strain softening with fracture in con-crete, fracture toughness and fracture energy in concrete”, Elsevier, Amsterdam, 163–175.
[40] Liaw, B. M., Jeang, F. L., Du, J. J., Hawkins, N. M., & Kobayashi, A. S. (1990). “Improved Nonlinear Model for Concrete Fracture”, Journal of Engineering Mechanics, 116(2), 429-445.
[41] CEB-FIP Model Code. (1993). Comité Euro-International du Béton. Bulletin d’Infornacion, Lausance, 213/214.
[42] Kang, S. T., Lee, Y., Park, Y. D., & Kim, J. K. (2010). “Tensile fracture properties of an Ultra High Performance Fiber Reinforced Concrete (UHPFRC) with steel fiber”, Composite Structures, 92(1), 61-71.
[43] Kamal, M. M., Safan, M. A., Etman, Z. A., & Abdelbaki, M. A. (2015). “Effect of steel fibers on the properties of recycled self-compacting concrete in fresh and hardened state”, International Journal of Civil Engineering, 13(4), 400-410.
[44] Reinhardt, H. W. (1984). “Fracture mechanics of an elastic softening material like concrete”, Stevin-Laboratory, Department of Civil Engineering, Delft Institute of Technology, Delft.
[45] Cifuentes, H., García, F., Maeso, O., & Medina, F. (2013). “Influence of the properties of polypropylene fibers on the fracture behavior of low-, normal- and high-strength FRC”, Construction and Building Materials, 45, 130-137.
[46] Park, K., Ha, K., Choi, H., & Lee, C. (2015). “Prediction of interfacial fracture between concrete and fiber rein-forced polymer (FRP) by using cohesive zone modeling”, Cement and Concrete Composites, 63, 122-131.
[47] Kizilkanat, A. (2016). “Experimental Evaluation of Mechanical Properties and Fracture Behavior of Carbon Fiber Reinforced High Strength Concrete”, Periodica Polytechnica Civil Engineering, 60(2), 289-296.
[48] Kurihara, N., Kunieda, M., Kamada, T., Uchida, Y., & Rokugo, K. (2000). “Tension softening diagrams and evaluation of properties of steel fiber reinforced concrete”, Engineering Fracture Mechanics, 65(2), 235-245.
[49] Murthy, A., Karihaloo, B. L., Iyer, N. R., & Raghu Prasad, B. K. (2013). “Bilinear tension softening diagrams of concrete mixes corresponding to their size-independent specific fracture energy”, Construction and Building Mate-rials, 47, 1160-1166.
[50] Zhang, X. X., Abdelazim, A. M., Ruiz, G., & Yu, R. C. (2014). “Fracture behavior of steel fiber-reinforced con-crete at a wide range of loading rates”, International Journal of Impact Engineering, 71, 89-96.
Send comment about this article