[1] Kansa EJ. Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—II solutions to parabolic, hyperbolic and elliptic partial differential equations. Computers & mathematics with applications. 1990;19(8-9):147-61. doi:10.1016/0898-1221(90)90271-K
[2] Seydaoğlu M. A meshless method for Burgers’ equation using multiquadric radial basis functions with a Lie-group integrator. Mathematics. 2019;7(2):113. doi:10.3390/math7020113
[3] Zheng K, Li C, Wang F, editors. Gaussian Radial Basis Function for Unsteady Groundwater Flow. IOP Conference Series: Earth and Environmental Science; 2019: IOP Publishing. doi:10.1088/1755-1315/304/2/022052
[4] Mirabi MH, Jabbari E, Rajaee T. Numerical Solution of Steady Incompressible Turbulent Navier–Stokes Equations using Multiquadric Radial Basis Function (MQ-RBF) Method. Amirkabir Journal of Civil Engineering. 2022;53(12):5325-56. doi:10.22060/ceej.2021.18788.6964 [In Persian]
[5] Babaee R, Jabbari E, Eskandari Ghadi M. Development of the Multiquadric mesh-less method for analyzing the dynamic interaction of dam-reservoir-foundation problems. Sharif Journal of Civil Engineering. 2022;38(3.1):65-76. doi:10.24200/J30.2022.60113.3085 [In Persian]
[6] Babaee R, Jabbari E, Eskandari-Ghadi M. Application of Multiquadric Radial Basis Function method for Helmholtz equation in seismic wave analysis for reservoir of rigid dams. Amirkabir Journal of Civil Engineering. 2019;52(12):3015-30. doi:10.22060/ceej.2019.16443.6230 [In Persian]
[7] Chen C, Karageorghis A, Amuzu L. Kansa RBF collocation method with auxiliary boundary centres for high order BVPs. Journal of Computational and Applied Mathematics. 2021;398:113680. doi: 10.1016/j.cam.2021.113680
[8] Golbabai A, Mohebianfar E, Rabiei H. On the new variable shape parameter strategies for radial basis functions. Computational and Applied Mathematics. 2015;34(2):691-704. doi: 10.1007/s40314-014-0132-0
[9] Zhang H, Guo C, Su X, Chen L. Shape parameter selection for multi-quadrics function method in solving electromagnetic boundary value problems. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering. 2016;35(1):64-79. doi: 10.1108/COMPEL-12-2014-0350
[10] Biazar J, Hosami M. Selection of an interval for variable shape parameter in approximation by radial basis functions. Advances in numerical analysis. 2016;2016(1):1397849. doi:10.1155/2016/1397849
[11] Yaghouti M, Ramezannezhad Azarboni H. Determining optimal value of the shape parameter $ c $ in RBF for unequal distances topographical points by Cross-Validation algorithm. Journal of Mathematical Modeling. 2017;5(1):53-60. doi:10.22124/JMM.2017.2225
[12] Chen W, Hong Y, Lin J. The sample solution approach for determination of the optimal shape parameter in the Multiquadric function of the Kansa method. Computers & Mathematics with Applications. 2018;75(8):2942-54. doi:10.1016/j.camwa.2018.01.023
[13] Azarboni HR, Keyanpour M, Yaghouti M. Leave-Two-Out Cross Validation to optimal shape parameter in radial basis functions. Engineering Analysis with Boundary Elements. 2019;100:204-10. doi:10.1016/j.enganabound.2018.06.011
[14] Luh L-T. The choice of the shape parameter–A friendly approach. Engineering Analysis with Boundary Elements. 2019;98:103-9. doi:10.1016/j.enganabound.2018.10.011
[15] Koushki M, Babaee R, Jabbari E. Application of MQ-RBF method for solving seepage problems with a new algorithm for optimization of the shape parameter. Amirkabir Journal of Civil Engineering. 2020;52(4):1009-24. doi: 10.22060/CEEJ.2019.15155.5840 [In Persian]
[16] Fallah A, Jabbari E, Babaee R. Development of the Kansa method for solving seepage problems using a new algorithm for the shape parameter optimization. Computers & Mathematics with Applications. 2019;77(3):815-29. doi:10.1016/j.camwa.2018.10.021
[17] Kahid Basiri H, Babaee R, Fallah A, Jabbari E. Development of multiquadric method for solving dam break problem. Journal of Hydraulics. 2020;14(4):83-98. doi:10.30482/JHYD.2020.105500 [In Persian]
[18] Sun J, Wang L, Gong D. Model for Choosing the Shape Parameter in the Multiquadratic Radial Basis Function Interpolation of an Arbitrary Sine Wave and Its Application. Mathematics. 2023;11(8):1856. doi:10.3390/math11081856
[19] Sun J, Wang L, Gong D. An adaptive selection method for shape parameters in mq-rbf interpolation for two-dimensional scattered data and its application to integral equation solving. Fractal and Fractional. 2023;7(6):448. doi:10.3390/fractalfract7060448
[20] Pekmen B, Kayabasi M. Machine Learning Modeling for Shape Parameter c in MQ-RBF Applied to Burgers’ Equations. doi:10.1007/978-3-031-70018-7_32
[21] Pekmen Geridonmez B, Kayabasi M, editors. Machine Learning Modeling for Shape Parameter c in MQ-RBF Applied to Burgers’ Equations. International Conference on Intelligent and Fuzzy Systems; 2024: Springer. doi:10.1007/9
[22] Sun J, Wang W. Adaptive selection of shape parameters for MQRBF in arbitrary scattered data: enhancing finite difference solutions for complex PDEs. Computational and Applied Mathematics. 2024;43(8):1-41. doi:10.1007/s40314-024-02970-6
[23] Taleni-Kalan H. Investigation of optimal shape parameter determination in multiquadric method for solving linear equation in water engineering. MSc Thesis, Faculty of Engineering, University of Qom, 2020. [In Persian]
[24] Mohsenzadeh Golafzani S. Investigation of Optimal Shape Parameter determination in Multiquadric Method for Solving nonlinear Equations in Water Engineering. MSc Thesis, Faculty of Engineering, University of Qom, 2020. [In Persian]
[25] Pourlak M, Jabbari E, Akbari H. The Effect of Initial Particles Distribution by in Smoothed Particle Hydrodynamic Method in Wave Generation Modeling Based on Laboratory Model. Civil Infrastructure Researches. 2023;9(2):35-50. doi:10.22091/CER.2023.9003.1451 [In Persian]
[26] MohammadAlian S, Babaee R, Jabbari E. A New Adaptive Algorithm for the Optimal Distribution of Computational Centers in the Meshless Multiquadric Method. Civil Infrastructure Researches. 2023;9(1):161-73. doi:10.22091/CER.2023.8470.1419 [In Persian]
[27] Gurarslan G, Karahan H, Alkaya D, Sari M, Yasar M. Numerical Solution of Advection‐Diffusion Equation Using a Sixth‐Order Compact Finite Difference Method. Mathematical Problems in Engineering. 2013;2013(1):672936. doi:10.1155/2013/67293610.1155/2013/672936
[28] Hon Y-C, Mao X. An efficient numerical scheme for Burgers' equation. Applied Mathematics and Computation. 1998;95(1):37-50. doi:10.1016/S0096-3003(97)10060-1
[29] Khaksarfard M, Ordokhani Y, Hashemi MS, Karimi K. Space-time radial basis function collocation method for one-dimensional advection-diffusion problem. Computational Methods for Differential Equations. 2018;6(4):426-37. doi:20.1001.1.23453982.2018.6.4.3.4
Send comment about this article