[1] Mehrabi, Z., Kamalian, R., Babaee, M., & Jabbari, E. (2020). Numerical Study of Local Scour Under the Jet Discharging From the Power Plants (Case Study: Neka Power Plant). Civil Infrastructure Researches, 6(1), 141-151. doi: 10.22091/cer.2021.6541.1225 [In Persian]
[2] Moayyedi, M. K., & Bashardust, A. (2019). Numerical Simulation of Airflow and Particle Deposition from the Surface of Raw Materials Piles and Studying the Effects of Shape Variations and Free-Stream Velocity in Wind Erosion Reduction. Civil Infrastructure Researches, 5(1), 121-134. doi: 10.22091/cer.2019.4211.1143 [In Persian]
[3] Farzin, S., Karami, H., Yahyavi, F., & Nayyer, S. (2018). Numerical study of hydraulic characteristics around the vertical and diagonal sharp crested weirs using Flow3D simulation.. Civil Infrastructure Researches, 4(1), 15-24. doi: 10.22091/cer.2017.1661.1068 [In Persian]
[4] Jabbari, E., Karami, H., & molaiyfard, M. (2017). Numerical investigation of the influence of a hole at the pier of the bridge on the flow characteristics of the pier. Civil Infrastructure Researches, 3(1), 17-29. doi: 10.22091/cer.2017.1930.1073 [In Persian]
[5] Fallah, A., Jabbari, E., & Babaee, R. (2019). Development of the Kansa method for solving seepage problems using a new algorithm for the shape parameter optimization. Computers & Mathematics with Applications, 77(3), 815-829. doi: 10.1016/j.camwa.2018.10.021
[6] Monaghan, J. J. (1992). Smoothed particle hydrodynamics. Annual review of astronomy and astrophysics, 30(1), 543-574. doi: 10.1146/annurev.aa.30.090192.002551
[7] Monaghan, J. J. (2012). Smoothed particle hydrodynamics and its diverse applications. Annual Review of Fluid Mechanics, 44, 323-346. doi: 10.1146/annurev-fluid-120710-101220
[8] Liu, M. B., & Liu, G. (2010). Smoothed particle hydrodynamics (SPH): an overview and recent developments. Archives of computational methods in engineering, 17, 25-76. doi: 10.1007/s11831-010-9040-7
[9] Lee, E. S., Violeau, D., Issa, R., & Ploix, S. (2010). Application of weakly compressible and truly incompressible SPH to 3-D water collapse in waterworks. Journal of Hydraulic research, 48(sup1), 50-60. doi: 10.1080/00221686.2010.9641245
[10] Fallah, A., Jabbari, E., & Babaee, R. (2019). Development of the Kansa method for solving seepage problems using a new algorithm for the shape parameter optimization. Computers & Mathematics with Applications, 77(3), 815-829. doi: 10.1016/j.camwa.2018.10.021
[11] MohammadAlian, S., Babaee, R., & Jabbari, E. (2023). A New Adaptive Algorithm for the Optimal Distribution of Computational Centers in the Meshless Multiquadric Method. Civil Infrastructure Researches, 9(1), 161-173. doi: 10.22091/cer.2023.8470.1419 [In Persian]
[12] Morris, J. P., Fox, P. J., & Zhu, Y. (1997). Modeling low Reynolds number incompressible flows using SPH. Journal of computational physics, 136(1), 214-226. doi: 10.1006/jcph.1997.5776
[13] Diehl, S., Rockefeller, G., Fryer, C. L., Riethmiller, D., & Statler, T. S. (2015). Generating optimal initial conditions for smoothed particle hydrodynamics simulations. Publications of the Astronomical Society of Australia, 32, e048. doi: 10.1017/pasa.2015.50
[14] Belytschko, T., Krongauz, Y., Dolbow, J., & Gerlach, C. (1998). On the completeness of meshfree particle methods. International Journal for Numerical Methods in Engineering, 43(5), 785-819. doi: 10.1002/(SICI)1097-0207(19981115)43:5<785::AID-NME420>3.0.CO;2-9
[15] Khayyer, A., Gotoh, H., & Shao, S. D. (2008). Corrected incompressible SPH method for accurate water-surface tracking in breaking waves. Coastal Engineering, 55(3), 236-250. doi: 10.1016/j.coastaleng.2007.10.001
[16] Antuono, M., Colagrossi, A., & Marrone, S. (2012). Numerical diffusive terms in weakly-compressible SPH schemes. Computer Physics Communications, 183(12), 2570-2580. doi: 10.1016/j.cpc.2012.07.006
[17] Gui, Q., Dong, P., & Shao, S. (2015). Numerical study of PPE source term errors in the incompressible SPH models. International Journal for Numerical Methods in Fluids, 77(6), 358-379. doi: 10.1002/fld.3985
[18] Gotoh, H., Khayyer, A., Ikari, H., Arikawa, T., & Shimosako, K. (2014). On enhancement of Incompressible SPH method for simulation of violent sloshing flows. Applied Ocean Research, 46, 104-115. doi: 10.1016/j.apor.2014.02.005
[19] Oger, G., Marrone, S., Le Touzé, D., & De Leffe, M. (2016). SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms. Journal of Computational Physics, 313, 76-98. doi: 10.1016/j.jcp.2016.02.039
[20] Sun, P. N., Colagrossi, A., Marrone, S., & Zhang, A. M. (2016). Detection of Lagrangian coherent structures in the SPH framework. Computer Methods in Applied Mechanics and Engineering, 305, 849-868. doi: 10.1016/j.cma.2016.03.027
[21] Monaghan, J. J. (1989). On the problem of penetration in particle methods. Journal of Computational physics, 82(1), 1-15.
[22] Monaghan, J. J. (2000). SPH without a tensile instability. Journal of computational physics, 159(2), 290-311. doi: 10.1006/jcph.2000.6439
[23] Akbari, H. (2019). An improved particle shifting technique for incompressible smoothed particle hydrodynamics methods. International Journal for Numerical Methods in Fluids, 90(12), 603-631. doi: 10.1002/fld.4737
[24] Pourlak, M., Akbari, H., & Jabbari, E. (2023). Importance of Initial Particle Distribution in Modeling Dam Break Analysis with SPH. KSCE Journal of Civil Engineering, 27(1), 218-232. doi: 10.1007/s12205-022-0304-1
[25] Leiserson, C. E., Rivest, R. L., Cormen, T. H., & Stein, C. (2009). Introduction to Algorithms, Third Edition, Cambridge, MA, USA: MIT press.
[26] Mahmoudi, A., Hakimzadeh, H., Ketabdari, M. J., Etemadshahidi, A., Cartwright, N., & Abyn, H. (2016). Weakly-compressible SPH and Experimental modeling of periodic wave breaking on a plane slope. International Journal of Maritime Technology, 5, 63-76. doi: 20.1001.1.23456000.2016.5.0.3.5
Send comment about this article