[1] Toufigh, V., Saeid, F., Toufigh, V., Ouria, A., Desai, C. S., & Saadatmanesh, H. (2014). Laboratory study of soil-CFRP interaction using pull-out test. Geomechanics and Geoengineering, 9(3), 208-214. doi: 10.1080/17486025.2013.813650
[2] Sommers, A. N., & Viswanadham, B. V. S. (2009). Centrifuge model tests on the behavior of strip footing on geotextile-reinforced slopes. Geotextiles and Geomembranes, 27(6), 497-505. doi: 10.1016/j.geotexmem.2009.05.002
[3] Naeini, S. A., & Gholampoor, N. (2014). Cyclic behaviour of dry silty sand reinforced with a geotextile. Geotextiles and Geomembranes, 42(6), 611-619. doi: 10.1016/j.geotexmem.2014.10.003
[4] Kaveh, A., Hoseini Vaez, S. R., Hosseini, P., & Fallah, N. (2016). Detection of damage in truss structures using Simplified Dolphin Echolocation algorithm based on modal data. Smart Structures and Systems, 18(5), 983-1004. doi: 10.12989/sss.2016.18.5.983
[5] Ouria, A., Toufigh, V., Desai, C., Toufigh, V., & Saadatmanesh, H. (2016). Finite element analysis of a CFRP reinforced retaining wall. Geomechanics and Engineering, 10(6), 757-774. doi: 10.12989/gae.2016.10.6.757
[6] Goodarzi, S., & Shahnazari, H. (2019). Strength enhancement of geotextile-reinforced carbonate sand. Geotextiles and Geomembranes, 47(2), 128-139. doi: 10.1016/j.geotexmem.2018.12.004
[7] Broda, J., Franitza, P., Herrmann, U., Helbig, R., Große, A., Grzybowska-Pietras, J., & Rom, M. (2020). Reclamation of abandoned open mines with innovative meandrically arranged geotextiles. Geotextiles and Geomembranes, 48(3), 236-242. doi: 10.1016/j.geotexmem.2019.11.003
[8] Lee, S. L., Mannan, M. A., & Ibrahim, W. H. W. (2020). Shear strength evaluation of composite pavement with geotextile as reinforcement at the interface. Geotextiles and Geomembranes, 48(3), 230-235. doi: 10.1016/j.geotexmem.2019.11.002
[9] Toufigh, V., Desai, C. S., Saadatmanesh, H., Toufigh, V., Ahmari, S., & Kabiri, E. (2014). Constitutive modeling and testing of interface between backfill soil and fiber-reinforced polymer. International Journal of Geomechanics, 14(3), 04014009. doi: 10.1061/(ASCE)GM.1943-5622.0000298
[10] Davarifard, S., & Tafreshi, S. M. (2015). Plate load tests of multi-layered geocell reinforced bed considering embedment depth of footing. Procedia Earth and Planetary Science, 15, 105-110. doi: 10.1016/j.proeps.2015.08.027
[11] Mehrjardi, G. T., Ghanbari, A., & Mehdizadeh, H. (2016). Experimental study on the behaviour of geogrid-reinforced slopes with respect to aggregate size. Geotextiles and Geomembranes, 44(6), 862-871. doi: 10.1016/j.geotexmem.2016.06.006
[12] Oliaei, M., & Kouzegaran, S. (2017). Efficiency of cellular geosynthetics for foundation reinforcement. Geotextiles and Geomembranes, 45(2), 11-22. doi: 10.1016/j.geotexmem.2016.11.001
[13] Mehrpajouh, A., & Moghaddas Tafreshi, S. N. (2017). Effects of soil density and geotextile reinforcement on California bearing ratio of sandy soil. Sharif Journal of Civil Engineering, 33(3.1), 95-103. doi: 10.24200/j30.2017.20069 [In Persian]
[14] Dastani, S., & Haghbin, M. (2020). Experimental investigation of bearing capacity of circle footing on sand slope reinforced with geogrid. Journal of Transportation Infrastructure Engineering, 6(3), 105-123. doi: 10.22075/jtie.2020.19015.1427 [In Persian]
[15] Kazemzadeh, M., Zad, A., & Yazdi, M. (2022). Numerical Modeling of Improvement of Soft Soil with Stone Columns under High-Speed Train Crossing. Civil Infrastructure Researches, 7(2), 157-168. doi: 10.22091/cer.2021.7397.1304 [In Persian]
[16] Nikkhah, M., Hosseini, M. M., & Abrishami, S. (2022). Laboratory study effect of the width of the foundation, the relative density of sand and pressure on the settlement of strip footings. Journal of Transportation Infrastructure Engineering, 8(2), 131-148. doi: 10.22075/jtie.2022.24827.1564 [In Persian]
[17] Bagherzadeh Khalkhali, A., Makarchian, M., Askari, M., & Ganjian, N. (2022). Evaluation of the Thin Layer Effect on the Ultimate Bearing Capacity of Strip Foundation on Sand. Amirkabir Journal of Civil Engineering, 54(7), 543-546. doi: 10.22060/ceej.2022.20657.7490
[18] Basudhar, P. K., Saha, S., & Deb, K. (2007). Circular footings resting on geotextile-reinforced sand bed. Geotextiles and Geomembranes, 25(6), 377-384. doi: 10.1016/j.geotexmem.2006.09.003
[19] Abu-Farsakh, M., Chen, Q., & Sharma, R. (2013). An experimental evaluation of the behavior of footings on geosynthetic-reinforced sand. Soils and Foundations, 53(2), 335-348. doi: 10.1016/j.sandf.2013.01.001
[20] Cicek, E., Guler, E., & Yetimoglu, T. (2015). Effect of reinforcement length for different geosynthetic reinforcements on strip footing on sand soil. Soils and Foundations, 55(4), 661-677. doi: 10.1016/j.sandf.2015.06.001
[21] Ouria, A., Karamzadegan, S., & Emami, S. (2021). Interface properties of a cement coated geocomposite. Construction and Building Materials, 266, 121014. doi: 10.1016/j.conbuildmat.2020.121014
[22] Ouria, A., Mahmoudi, A., & Sadeghpour, H. (2020). Effect of the geotextile arrangement on the bearing capacity of a strip footing. International Journal of Geosynthetics and Ground Engineering, 6(3), 1-14. doi: 10.1007/s40891-020-00219-w
[23] Ouria, A., & Heidarly, E. (2021). Laboratory Investigation of the Effect of the Geotextile Placement Pattern on the Bearing Capacity of Footing on Reinforced Sand. Modares Civil Engineering journal, 21(3), 21-34. [In Persian]
[24] Toufigh, V., Ouria, A., Desai, C. S., Javid, N., Toufigh, V., & Saadatmanesh, H. (2016). Interface behavior between carbon-fiber polymer and sand. Journal of Testing and Evaluation, 44(1), 385-390. doi: 10.1520/JTE20140153
[25] Ouria, A., Sadeghpour, H., Fahmi, A. (2022). Laboratory Modeling of a Spread Footing on Sand Reinforced by Strips of Carbon Fiber Reinforcement. Journal of Civil and Environmental Engineering. doi: 10.22034/jcee.2022.50268.2116 [In Persian]
[26] Ouria, A., & Mahmoudi, A. (2018). Laboratory and numerical modeling of strip footing on geotextile-reinforced sand with cement-treated interface. Geotextiles and Geomembranes, 46(1), 29-39. doi: 10.1016/j.geotexmem.2017.09.003
[27] Ouria, A., Emami, S., & Karamzadegan, S. (2021). Laboratory Investigation of the Effect of the Cement Treatment of the Interface and the Thicknesses of Reinforcement on its Pull-out Capacity. Amirkabir Journal of Civil Engineering, 52(11), 2831-2846. doi: 10.22060/ceej.2019.16191.6149
[28] Xu, Y., Williams, D. J., & Serati, M. (2018). Influence of anchorage angles on pull-out resistance of geotextile wrap around anchorage. Geosynthetics International, 25(4), 378-391. doi: 10.1680/jgein.18.00022
[29] Jaiswal, S., & Chauhan, V. B. (2021). Response of strip footing resting on earth bed reinforced with geotextile with wraparound ends using finite element analysis. Innovative Infrastructure Solutions, 6(2), 1-9. doi: 10.1007/s41062-021-00486-0
[30] Raja, M. N. A., & Shukla, S. K. (2021). Experimental study on repeatedly loaded foundation soil strengthened by wraparound geosynthetic reinforcement technique. Journal of Rock Mechanics and Geotechnical Engineering, 13(4), 899-911. doi: 10.1016/j.jrmge.2021.02.001
[31] Ouria, A., & Sadeghpour, H. (2022). Laboratory and numerical simulation of the effect of wraparound anchorage of reinforcements on the bearing capacity of spread footing. Sharif Journal of Civil Engineering, 37.2(4.1), 93-104. doi: 10.24200/j30.2021.57629.2922 [In Persian]
[32] Jaiswal, S., Srivastava, A., & Chauhan, V. B. (2022). Performance of strip footing on sand bed reinforced with multilayer geotextile with wraparound ends. In Ground improvement and reinforced soil structures, 15, 721-732. Springer, Singapore. doi: 10.1007/978-981-16-1831-4_64
[33] Kazi, M., Shukla, S. K., & Habibi, D. (2016). Behaviour of an embedded footing on geotextile-reinforced sand. Proceedings of the Institution of Civil Engineers-Ground Improvement, 169(2), 120-133. doi: 10.1680/grim.14.00022
[34] Aria, S., Kumar Shukla, S., & Mohyeddin, A. (2019). Numerical investigation of wraparound geotextile reinforcement technique for strengthening foundation soil. International Journal of Geomechanics, 19(4), 04019003. doi: 10.1061/(ASCE)GM.1943-5622.0001361
[35] Chang, G. M. (2007). Study on the Application of Composite soil-nailing in Loess Excavations. Xi’An: Chang’An University.
[36] Khazaie, J., & Mirnaghizadeh, M. (2017). The effect on the stabilization excavation stairs by nailing With regard to various behavioral models. Civil Infrastructure Researches, 3(1), 31-37. doi: 10.22091/cer.2017.554.1027 [In Persian]
[37] Ghanbari, A., & Mousavi Moallem, S. A. (2022). Design Charts for Estimating Response of RC Frame Building Adjacent to Deep Excavation Supported by Soil-Nailing Method. Civil Infrastructure Researches, 7(2), 93-105. doi: 10.22091/cer.2021.7217.1278 [In Persian]
[38] Prashant, A., & Mukherjee, M. (2010). Soil nailing for stabilization of steep slopes near railway tracks. Department of Civil Engineering, Indian Institute of Technology Kanpur.
[39] Wang, J., Cao, J., Hu, J., & Liu, H. (2008, October). Application of flac in foundation pit with compound soil nailing support. In 2008 Fourth International Conference on Natural Computation, 4, 331-336. doi: 10.1109/ICNC.2008.515
[40] ASTM, D3080-04. (2004). Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions. American Society for Testing and Materials, Philadelphia, Pennsylvania, USA.
[41] ASTM, D2216-05. (2005). Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass. American Society for Testing and Materials
[42] ASTM, C127-07. (2007). Standard test method for specific gravity and absorption of coarse aggregate. Philadelphia, PA: American Society for Testing and Materials.
[43] ASTM, D2487. (2011). Standard classification of soils for engineering purposes (unified soil classification system). Annual Book of ASTM Standards, 4, 206-215.
[44] ASTM D4595-11. (2011). Standard Test Method for Tensile Properties of Geotextiles by the Wide-Width Strip Method. American society for testing materials.
[45] ASTM D5261-10. (2018). Standard Test Method for Measuring Mass per Unit Area of Geotextiles, ASTM International, West Conshohocken, PA.
[46] Wood, D. M. (2017). Geotechnical modelling. CRC press.
[47] Dixit, R. K., & Mandal, J. N. (1993). Dimensional analysis and modelling laws for bearing capacity of reinforced and unreinforced soil. Construction and Building Materials, 7(4), 203-205. doi: 10.1016/0950-0618(93)90003-U
[48] ASTM D5199. (2012). Standard test method for measuring the nominal thickness of geosynthetics. ASTM International, West Conshohocken, PA
Send comment about this article