[1] Guo, Q., Wang, H., Gao, Y., Jiao, Y., Liu, F., & Dong, Z. (2020). Investigation of the low-temperature properties and cracking resistance of fiber-reinforced asphalt concrete using the DIC technique. Engineering Fracture Mechanics, 229, 106951.
[2] Zhao, W., Xie, X., Li, G., Geng, J., Bao, M., & Wang, M. (2020). Research on the Influence of Nanocarbon/Copolymer SBS/Rubber Powder Composite Modification on the Properties of Asphalt and Mixtures. Advances in Materials Science and Engineering, 2020.
[3] Yalghouzaghaj, M. N., Sarkar, A., Hamedi, G. H., & Hayati, P. (2021). Application of the surface free energy method on the mechanism of low-temperature cracking of asphalt mixtures. Construction and Building Materials, 268, 121194.
[4] Mamun, A. A., & Arifuzzaman, M. (2018). Nano-scale moisture damage evaluation of carbon nanotube-modified asphalt. Construction and Building Materials, 193, 268–275.
[5] Pirmohammad, S., Majd-Shokorlou, Y., & Amani, B. (2020). Experimental investigation of fracture properties of asphalt mixtures modified with Nano Fe2O3 and carbon nanotubes. Road Materials and Pavement Design, 21(8), 2321–2343.
[6] Wang, T., Xiao, F., Amirkhanian, S., Huang, W., & Zheng, M. (2017). A review on low temperature performances of rubberized asphalt materials. Construction and Building Materials, 145, 483–505.
[7] Shafabakhsh, G., Sadeghnejad, M., & Ebrahimnia, R. (2021). Fracture resistance of asphalt mixtures under mixed-mode I/II loading at low-temperature: Without and with nano SiO2. Construction and Building Materials, 266, 120954.
[8] Fakhri, M., Siyadati, S. A., & Aliha, M. R. M. (2020). Impact of freeze–thaw cycles on low temperature mixed mode I/II cracking properties of water saturated hot mix asphalt: an experimental study. Construction and Building Materials, 261, 119939.
[9] Zhou, F., Im, S., Hu, S., Newcomb, D., & Scullion, T. (2017). Selection and preliminary evaluation of laboratory cracking tests for routine asphalt mix designs. Road Materials and Pavement Design, 18(sup1), 62–86.
[10] Adnan, A. M., Luo, X., Lü, C., Wang, J., & Huang, Z. (2020a). Improving mechanics behavior of hot mix asphalt using graphene-oxide. Construction and Building Materials, 254, 119261.
[11] Zhou, B., Pei, J., Zhang, J., Guo, F., Wen, Y., & Luo, P. (2020). Comparison of Fracture Test Methods for Evaluating the Crack Resistance of Asphalt Mixture. Arabian Journal for Science and Engineering, 45(10), 8745–8758.
[12] Fakhri, M., & Mottahed, A. R. (2021). Improving moisture and fracture resistance of warm mix asphalt containing RAP and nanoclay additive. Construction and Building Materials, 272, 121900.
[13] Mansourian, A., Razmi, A., & Razavi, M. (2016). Evaluation of fracture resistance of warm mix asphalt containing jute fibers. Construction and Building Materials, 117, 37–46.
[14] Fakhri, M., Shahryari, E., & Ahmadi, T. (2022). Investigate the use of recycled polyvinyl chloride (PVC) particles in improving the mechanical properties of stone mastic asphalt (SMA). Construction and Building Materials, 326, 126780.
[15] Pirmohammad, S., Shokorlou, Y. M., & Amani, B. (2020). Laboratory investigations on fracture toughness of asphalt concretes reinforced with carbon and kenaf fibers. Engineering Fracture Mechanics, 226, 106875.
[16] Adnan, A. M., Luo, X., Lü, C., Wang, J., & Huang, Z. (2020b). Physical properties of graphene-oxide modified asphalt and performance analysis of its mixtures using response surface methodology. International Journal of Pavement Engineering, 1–15.
[17] Zhu, J., Zhang, K., Liu, K., & Shi, X. (2020). Adhesion characteristics of graphene oxide modified asphalt unveiled by surface free energy and AFM-scanned micro-morphology. Construction and Building Materials, 244, 118404.
[18] Tarcan, R., Todor-Boer, O., Petrovai, I., Leordean, C., Astilean, S., & Botiz, I. (2020). Reduced graphene oxide today. Journal of Materials Chemistry C, 8(4), 1198–1224.
[19] Singh, B. B., Mohanty, F., Das, S. S., & Swain, S. K. (2020). Graphene sandwiched crumb rubber dispersed hot mix asphalt. Journal of Traffic and Transportation Engineering (English Edition), 7(5), 652–667.
[20] Xu, G., & Wang, H. (2017). Molecular dynamics study of oxidative aging effect on asphalt binder properties. Fuel, 188, 1–10.
[21] Wang, J., Jia, H., Tang, Y., Ji, D., Sun, Y., Gong, X., & Ding, L. (2013). Enhancements of the mechanical properties and thermal conductivity of carboxylated acrylonitrile butadiene rubber with the addition of graphene oxide.
[22] Zhu, J., Zhang, K., Liu, K., & Shi, X. (2019). Performance of hot and warm mix asphalt mixtures enhanced by nano-sized graphene oxide. Construction and Building Materials, 217, 273–282.
[23] Liu, K., Zhang, K., & Shi, X. (2018). Performance evaluation and modification mechanism analysis of asphalt binders modified by graphene oxide. Construction and Building Materials, 163, 880–889.
[24] Moreno-Navarro, F., Sol-Sánchez, M., Gámiz, F., & Rubio-Gámez, M. C. (2018). Mechanical and thermal properties of graphene modified asphalt binders. Construction and Building Materials, 180, 265–274.
[25] Wang, R., Yue, M., Xiong, Y., & Yue, J. (2021). Experimental study on mechanism, aging, rheology and fatigue performance of carbon nanomaterial/SBS-modified asphalt binders. Construction and Building Materials, 268(xxxx), 121189.
[26] Jyothirmai, B., Kiranmai, M. H., & Vagdevi, K. (2020). Graphene reinforces asphalt–Doubles durability of road. AIP Conference Proceedings, 2269(1), 30085. AIP Publishing LLC.
[27] Wang, R., Qi, Z., Li, R., & Yue, J. (2020). Investigation of the effect of aging on the thermodynamic parameters and the intrinsic healing capability of graphene oxide modified asphalt binders. Construction and Building Materials, 230, 116984.
[28] Fakhri, M., & Shahryari, E. (2021). The effects of Nano Zinc Oxide (ZnO) and Nano Reduced Graphene Oxide (RGO) on moisture susceptibility property of Stone Mastic Asphalt (SMA). Case Studies in Construction Materials, 15(June), e00655.
[29] Pirmohammad, S., Shokorlou, Y. M., & Amani, B. (2020). Corrigendum to “Laboratory investigations on fracture resistance of asphalt concretes reinforced with carbon and kenaf fibers at− 15° C” [Eng. Fract. Mech. 226 (2020) 106875]. Engineering Fracture Mechanics, 230, 106977.
[30] Kaseer, F., Yin, F., Arámbula-Mercado, E., Martin, A. E., Daniel, J. S., & Salari, S. (2018). Development of an index to evaluate the cracking potential of asphalt mixtures using the semi-circular bending test. Construction and Building Materials, 167, 286–298.
[31] Kavussi, A., & Motevalizadeh, S. M. (2021). Fracture and mechanical properties of water-based foam warm mix asphalt containing reclaimed asphalt pavement. Construction and Building Materials, 269(xxxx), 121332.
[32] Razmi, A., & Mirsayar, M. M. (2018). Fracture resistance of asphalt concrete modified with crumb rubber at low temperatures. International Journal of Pavement Research and Technology, 11(3), 265–273.
[33] Golchin, B., Safayi, R. (2018). Effect of Carbon Fibers on Fracture Toughness of Asphalt Mixtures Using Linear Elastic Fracture Mechanics. Journal of Transportation Infrastructure Engineering, 4(2), 77-92. doi: 10.22075/jtie.2018.13530.1269.
[34] Mansourian, A., Razmi, A., Razavi, M. Mohammad Aliha, M. R. (2019). Evaluation of fracture toughness of warm-mix asphalt containing natural and synthesis fibers at Low temperatures, Sharif Journal of Civil Engineering, 35.2(2.2), 29-38.
[35] Kavussi, A., Motevalizadeh, S. (2019). Determination of Fracture Properties of Warm Mix Asphalt at Low Temperatures Based on SCB Results. Journal of Transportation Infrastructure Engineering, 5(2), 1-16. doi: 10.22075/jtie.2019.17747.1387.
[36] Falchetto, A. C., Moon, K. H., Wang, D., Riccardi, C., & Wistuba, M. P. (2018). Comparison of low-temperature fracture and strength properties of asphalt mixture obtained from IDT and SCB under different testing configurations. Road Materials and Pavement Design, 19(3), 591–604.
[37] shahryari, E., Fakhri, M. (2022). Investigation of mechanical properties of stone mastic asphalt mix (SMA) modified with Nano Reduced Graphene Oxide. Journal of Transportation Infrastructure Engineering, (), -. doi: 10.22075/jtie.2022.26070.1586.
Send comment about this article