[1] Vaníček, I., Jirásko, D., & Vaníček, M. (2020).
Modern Earth Structures for Transport Engineering: Engineering and Sustainability Aspects. CRC Press
https://doi.org/10.1201/9780429263668.
[2] Viswanadham, B., Jha, B., & Pawar, S. (2010). “Experimental study on flexural testing of compacted soil beams”, Journal of Materials in Civil Engineering, 22(5), 460-468.
[3] Puppala, A. J., & Pedarla, A. (2017). “Innovative ground improvement techniques for expansive soils”, Innovative Infrastructure Solutions, 2(1), 1-15.
[4] Kocasoy, G., & Curi, K. (1995) “The Ümraniye-Hekimbaşi open dump accident”, Waste management & research, 13(4), 305-314.
[5] Hudson, W. R., & Kennedy, T. W. (1968). An indirect tensile test for stabilized materials. Center for Highway Research, University of Texas at Austin.
[6] Ajaz, A., & Parry, R. (1975). “Stress–strain behaviour of two compacted clays in tension and compression”, Geotechnique, 25(3), 495-512.
[7] Dass, R., Yen, S., Puri, V., Das, B., & Wright, M. (1993). “Tensile stress-strain behavior of lightly cemented sand”, International journal of rock mechanics and mining sciences & geomechanics abstracts, 30(7), 711-714.
[8] Kim, T.-H., & Hwang, C. (2003). “Modeling of tensile strength on moist granular earth material at low water content”, Engineering geology, 69(3-4), 233-244.
[9] Nahlawi, H., Chakrabarti, S., & Kodikara, J. (2004). “A direct tensile strength testing method for unsaturated geomaterials”, Geotechnical Testing Journal, 27(4), 356-361.
[10] Ammeri, A., Jamei, M., Guiras, H., Bouassida, M., Villard, P., Plé, O., Camp, S., & Gourc, J.P. (2006). “A Numerical study of compacted clay tensile strength by discrete element modelling: A bending test application”, First Euro Mediterranean In Advance on Geomaterials and Structures, https://hal.archives-ouvertes.fr/hal-01099835
[11] Lu, N., Wu, B., & Tan, C. P. (2007). “Tensile strength characteristics of unsaturated sands”, Journal of Geotechnical and Geoenvironmental Engineering, 133(2), 144-154.
[12] Tamrakar, S. B., Mitachi, T., & Toyosawa, Y. (2007). “Factors affecting tensile strength measurement and modified tensile strength measuring apparatus for soil, in Experimental Unsaturated Soil Mechanics”, Springer, 207-218.
[13] Zeh, R. M., & Witt, K. J. (2007). “The tensile strength of compacted clays as affected by suction and soil structure, in Experimental unsaturated soil mechanics”, Springer, 219-226.
[14] Wang, J.-J., Zhu, J.-G., Chiu, C., & Zhang, H. (2007). “Experimental study on fracture toughness and tensile strength of a clay”, Engineering Geology, 94(1-2), 65-75.
[15] Arslan, H., Sture, S., & Batiste, S. (2008). “Experimental simulation of tensile behavior of lunar soil simulant JSC-1”, Materials Science and Engineering: A, 478(1-2), 201-207.
[16] Kim, T.-H., & Sture, S. (2008). “Capillary-induced tensile strength in unsaturated sands”, Canadian Geotechnical Journal, 45(5), 726-737.
[17] Li, J., Tang, C., Wang, D., Pei, X., & Shi, B. (2014). “Effect of discrete fibre reinforcement on soil tensile strength”, Journal of Rock Mechanics and Geotechnical Engineering, 6(2), 133-137.
[18] Divya, P., Viswanadham, B., & Gourc, J. (2014). “Evaluation of tensile strength-strain characteristics of fiber-reinforced soil through laboratory tests”, Journal of Materials in civil Engineering, 26(1), 14-23.
[19] Tang, C.-S., Pei, X.-J., Wang, D.-Y., Shi, B., & Li, J. (2015). “Tensile strength of compacted clayey soil”, Journal of Geotechnical and Geoenvironmental Engineering, 141(4), 04014122.
[20] Zhang, B.-y., Li, Q.-m., Yuan, H.-n., & Sun, X. (2015). “Tensile fracture characteristics of compacted soils under uniaxial tension”, Journal of Materials in Civil Engineering, 27(10), 04014274.
[21] Tang, C.-S., Wang, D.-Y., Cui, Y.-J., Shi, B., & Li, J. (2016). “Tensile strength of fiber-reinforced soil”, Journal of Materials in Civil Engineering, 28(7), 04016031.
[22] Li, Y., Ling, X., Su, L., An, L., Li, P., & Zhao, Y. (2018). “Tensile strength of fiber reinforced soil under freeze-thaw condition”, Cold Regions Science and Technology, 146, 53-59.
[23] He, S., & Bai, H. (2019). “Elastic-Plastic Behavior of Compacted Loess under Direct and Cyclic Tension”, Advances in Materials Science and Engineering, 2019, https://doi.org/10.1155/2019/6038505.
[24] Tran, K. Q., Satomi, T., & Takahashi, H. (2019). “Tensile behaviors of natural fiber and cement reinforced soil subjected to direct tensile test”, Journal of Building Engineering, 24, 100748.
[25] Wong, C. K., Wan, R. G., & Wong, R. C. (2020). “Tensile and shear failure behaviour of compacted clay–hybrid failure mode”, International journal of geotechnical engineering, 14(3), 231-241.
[26] Anagnos, J. N., Kennedy, T. W., & Hudson, W. R. (1970). Evaluation and Prediction of Tensile Properties of Cement-Treated Materials. Center for Highway Research, University of Texas, Austin
[27] Krishnayya, A., & Eisenstein, Z. (1974). “Brazilian tensile test for soils”, Canadian Geotechnical Journal, 11(4), 632-642.
[28] Consoli, N. C., da Fonseca, A. V., Cruz, R. C., & Silva, S. R. (2011). “Voids/cement ratio controlling tensile strength of cement-treated soils”, Journal of geotechnical and geoenvironmental engineering, 137(11), 1126-1131.
[29] Stracke, F., Jung, J. G., Korf, E. P., & Consoli., N. C. (2012). “The influence of moisture content on tensile and compressive strength of artificially cemented sand”, Soils Rocks, 35(3), 303-308.
[30] Anggraini, V., Asadi, A., Huat, B. B., & Nahazanan H. (2015). “Effects of coir fibers on tensile and compressive strength of lime treated soft soil”, Measurement, 59, 372-381.
[31] Gaspar, T. A. V. (2017). Investigating the tensile behaviour of unsaturated soils using the Brazilian disc test. MSc Thesis, Faculty of Engineering, University of Pretoria.
[32] Yang, B.-h., Weng, X.-z., Liu, J.-z., Kou, Y.-n., Jiang, L., Li, H.-l., Yan, X.-c. (2017). “Strength characteristics of modified polypropylene fiber and cement-reinforced loess”, Journal of Central South University, 24(3), 560-568.
[33] Baldovino, J. A., Moreira, E. B., Izzo, R. L. d. S., & Rose, J. L. (2018). “Empirical relationships with unconfined compressive strength and split tensile strength for the long term of a lime-treated silty soil”, Journal of Materials in Civil Engineering, 30(8), 06018008.
[34] Khajeh, A., Mola-Abasi, H., & Naderi Semsani, S. (2019). “Tensile strength parameters controlling of zeolite-cemented sands”, Scientia Iranica, 26(1), 213-223.
[35] Gao, C., Du, G., Guo, Q., Xia, H., Pan, H., & Cai, J. (2020). “Dynamic and Static Splitting-Tensile Properties of Basalt Fiber–Reinforced Cemented Clay Under Freeze–Thaw Cycles”, Journal of Materials in Civil Engineering, 32(10), 06020014.
[36] Nezhad, M. G., Tabarsa, A., & Latifi, N. (2021). “Effect of natural and synthetic fibers reinforcement on California bearing ratio and tensile strength of clay”, Journal of Rock Mechanics and Geotechnical Engineering, 13(3), 626-642.
[37] Guo, P., Gu, J., Su, Y., Wang, J., & Ding, Z. (2021). “Effect of cyclic wetting–drying on tensile mechanical behavior and microstructure of clay-bearing sandstone”, International Journal of Coal Science & Technology, 1-13.
[38] He, S., Wang, X., Bai, H., Xu, Z., & Ma, D. (2021). “Effect of fiber dispersion, content and aspect ratio on tensile strength of PP fiber reinforced soil”, Journal of Materials Research and Technology, 15, 1613-1621.
[39] MN, J., AW, A.-D., & MT, A.-L. (2008). “Tensile strength of natural and lime stabilized Mosul clay”, Al-Rafidain Engineering Journal (AREJ), 16(2), 1-11.
[40] Correia, A. A., Oliveira, P. J. V., & Custódio, D. G. (2015). “Effect of polypropylene fibres on the compressive and tensile strength of a soft soil, artificially stabilised with binders”, Geotextiles and Geomembranes, 43(2), 97-106.
[41] Al-Hussaini, M. (1981). Tensile properties of compacted soils, in Laboratory Shear Strength of Soil. ASTM International, 740, 207-225.
[42] Timoshenko, S. (1940). Strength of Materials. Part I (1940), Part II (1941). New York. Van Nostrand.
[43] Pourzargar, A. (2017). Application of suction stress concept to partially saturated compacted soils. PhD Thesis, Faculty of Civil and Environmental Engineering, Ruhr university bochum.
Send comment about this article