[1] Fang, X.-Q., Tian, J.-Y., Yang, S.-P., & Li, B.-L. (2019). “Elastic–slip interface effect on effective elastic modulus of elliptical-fiber reinforced asphalt concrete with large deformation”. Archives of Civil and Mechanical Engineering, 19(3), 707-715.
[2] Alsaif, A., Bernal, S. A., Guadagnini, M., & Pilakoutas, K. (2018). “Durability of steel fibre reinforced rubberised concrete exposed to chlorides”. Construction and Building Materials, 188, 130-142.
[3] Alsaif, A., Koutas, L., Bernal, S. A., Guadagnini, M., & Pilakoutas, K. (2018). “Mechanical performance of steel fibre reinforced rubberised concrete for flexible concrete pavements”. Construction and Building Materials, 172, 533-543.
[4] Dalhat, M., Osman, S., Alhuraish, A.-A. A., Almarshad, F. K., Qarwan, S. A., & Adesina, A. Y. (2020). “Chicken Feather fiber modified hot mix asphalt concrete: Rutting performance, durability, mechanical and volumetric properties”. Construction and Building Materials, 239, 117849.
[5] Luo, D., Khater, A., Yue, Y., Abdelsalam, M., Zhang, Z., Li, Y., & Iseley, D. T. (2019). “The performance of asphalt mixtures modified with lignin fiber and glass fiber: A review”. Construction and Building Materials, 209, 377-387.
[6] Bocci, E., & Prosperi, E. (2020). “Recycling of reclaimed fibers from end-of-life tires in hot mix asphalt”. Journal of Traffic and Transportation Engineering, (English Edition).
[7] Abiola, O., Kupolati, W., Sadiku, E., & Ndambuki, J. (2014). “Utilisation of natural fibre as modifier in bituminous mixes: A review”. Construction and Building Materials, 54, 305-312.
[8] Da Silva, L., Benta, A., & Picado-Santos, L. (2018). “Asphalt rubber concrete fabricated by the dry process: Laboratory assessment of resistance against reflection cracking”. Construction and Building Materials, 160, 539-550.
[9] Li, Z., Zhang, X., Fa, C., Zhang, Y., Xiong, J., & Chen, H. (2020). “Investigation on characteristics and properties of bagasse fibers: Performances of asphalt mixtures with bagasse fibers”. Construction and Building Materials, 248, 118648.
[10] Qin, X., Shen, A., Guo, Y., Li, Z., & Lv, Z. (2018). “Characterization of asphalt mastics reinforced with basalt fibers”. Construction and Building Materials, 159, 508-516.
[11] Slebi-Acevedo, C. J., Lastra-González, P., Castro-Fresno, D., & Bueno, M. (2020). “An experimental laboratory study of fiber-reinforced asphalt mortars with polyolefin-aramid and polyacrylonitrile fibers”. Construction and Building Materials, 248, 118622.
[12] Tanzadeh, J., & Shahrezagamasaei, R. (2017). “Laboratory assessment of hybrid fiber and nano-silica on reinforced porous asphalt mixtures”. Construction and Building Materials, 144, 260-270.
[13] Ziari, H., & Moniri, A. (2019). “Laboratory evaluation of the effect of synthetic Polyolefin-glass fibers on performance properties of hot mix asphalt”. Construction and Building Materials, 213, 459-468.
[14] Cleven, M.A., (2000). Investigation of the properties of carbon fiber modified asphalt mixtures, (Master's thesis, Michigan Technological University).
[15] Wu, S., Ye, Q., & Li, N. (2008), “Investigation of rheological and fatigue properties of asphalt mixtures containing polyester fibers”. Construction and Building Materials, 22(10), 2111-2115.
[16] Tapkın, S. (2008), “The effect of polypropylene fibers on asphalt performance”. Building and Environment, 43(6), 1065-1071.
[17] Taherkhani, H., & Amini, H. (2016), “Investigating the Properties of Nylon Fiber Reinforced Asphalt Concrete”. International Journal of Science and Engineering Investigations, 5(48). 1-6.
[18] Putman, B.J. (2011), “Effects of fiber finish on the performance of asphalt binders and mastics”. Advances in Civil Engineering, 2011.
[19] Noorvand, H., Salim, R., Medina, J., Stempihar, J., & Underwood, B.S. (2018), “Effect of synthetic fiber state on mechanical performance of fiber reinforced asphalt concrete”. Transportation Research Record, 2672(28), 42-51.
[20] Kaloush, K. E., Biligiri, K. P., Zeiada, W. A., Rodezno, M. C., & Reed, J. X. (2010). “Evaluation of fiber-reinforced asphalt mixtures using advanced material characterization tests”. Journal of Testing and Evaluation. 38(4), 400-411.
[21] Fazaeli, H., Yousef, S., Pirnoun, A., & Dabiri, A. (2016). “Laboratory and field evaluation of the warm fiber reinforced high performance asphalt mixtures (case study Karaj–Chaloos Road)”. Construction and Building Materials, 122, 273-283.
[22] Mirabdolazimi, S., & Shafabakhsh, G. (2017), “Rutting depth prediction of hot mix asphalts modified with forta fiber using artificial neural networks and genetic programming technique”. Construction and Building Materials, 148, 666-674.
[23] Jaskuła, P., Stienss, M., & Szydłowski, C. (2017), “Effect of polymer fibres reinforcement on selected properties of asphalt mixtures”. Procedia Engineering, 172, 441-448.
[24] Underwood, B.S., & Zeiada, W. (2015), Layer Coefficient Calibration of Fiber Reinforced Asphalt Concrete Based On Mechanistic Empirical Pavement Design Guide.
[25] Al-Qadi, I. L., Elseifi, M. A., Yoo, P. J., Dessouky, S. H., Gibson, N., Harman, T., ... & Petros, K. (2008). “Ac-curacy of current complex modulus selection procedure from vehicular load pulse: NCHRP Project 1-37A mechanistic-empirical pavement design guide”. Transportation research record, 2087(1), 81-90.
[26] Fujie Zhou, E. F., & Scullion, T. (2010). Development, calibration, and validation of performance predic-tion models for the texas ME flexible pavement design system. Report No. FHWA/TX-10/0-5798-2, Texas De-partment of Transportation, Research and Technology Implementation Office, PO Box 5080, Austin, Texas.
[27] AASHTO. (1996). Standard test method for determining the resilient modulus of bituminous mixtures by indirect tension, AASHTO designation: TP 31, Washington DC, United States: American Association of State Highway and Transportation Officials.
[28] ASTM. (2011). Standard test method for determining the resilient modulus of bituminous mixtures by indi-rect tension test, ASTM designation: D 7369. Washington, DC, USA: ASTM International.
[29] Hu, X., Zhou, F., Hu, S., & Walubita, L.F. (2010). “Proposed loading waveforms and loading time equa-tions for mechanistic–empirical pavement design and analysis”. Journal of Transportation Engineering, 136(6), 518–27.
[30] Myers, R.H., & Montgomery, D.C. )2002(. “Response Surface Methodology: process and product optimization using designed experiment”. A Wiley-Interscience Publication.
[31] AASHTO. (2010). AASHTO T166: Bulk specific gravity of compacted bituminous mixtures using saturated surface-dry specimens. Transportation Research Board, American Association of State Highway and Transportation Officials, Washington, D.C.
[32] AASHTO. (2010). AASHTO T245: Standard method of test for resistance to plastic flow of bituminous mixtures using Marshall Apparatus. Transportation Research Board, American Association of State Highway and Transportation Officials, Washington, D.C.
[33] AASHTO. (2010). AASHTO T209: Theoretical Maximum Specific Gravity and Density of Hot Mix Asphalt (HMA). Transportation Research Board, American Association of State Highway and Transportation Officials, Washington, D.C.
[34] Asphalt Institute. (1997). Mix design methods, MS-2. The Asphalt Institute manual series no. 2.
[35] ASTM International. (1995). ASTM D 4123: Standard Test Method for Indirect Tension Test for Resilient Modulus of Bituminous Mixtures. West Conshohocken, PA: American Society for Testing and Materials.
Send comment about this article