[1] Soleimani, K., Ketabdari, M., & Ebadi Manesh, M. (2015). “The system of piles and decks and the development of its use in the coastal areas”, 1St National Congress on Construction Engineering and Projects Assessment (in Persian).
[2] Ebrahimi, A., Baharvandi Askar, M., Deilami, M., & Chegini, V. (2016). “Effect of destruction and corrosion in marine and coastal structures of hot and humid areas”, International Conference on Civil and Urban Architecture (in Persian).
[3] Vamvatsikos, D., & Cornell, C. A. (2002). “Incremental dynamic analysis”, Earthquake Engineering & Structural Dynamics, 31(3), 491-514.
[4] Sayadi, H., Akbarpour Nik Ghalb Rashti, A., & Rabieefar, H. (2016). “Investigation of corrosion of reinforcement in concrete structures on the southern coast of Iran”, 2nd International Conference on Research in Science and Technology (in Persian).
[5] Farhadi, H., Gardandeh, A., & Jafari Abdolmaleki, M. (2016). “The effect of corrosion caused by chloride ions in reinforcement on the bearing capacity of concrete members in marine environments”, Second National Conference on Architecture, Civil Engineering & Urban Modern Development ( in Persian).
[6] Dashti Naser Abadi, H., & Ranjbar, R. (2015). “Investigation of the Effects of Chloride, Sulfate, and Carbonation on Structures in Marine Environment”, National Conference on Engineering Science, New Ideas, Tonekabon (in Persian).
[7] Dang, V. H., & François, R. (2014). “Prediction of ductility factor of corroded reinforced concrete beams exposed to long term aging in chloride environment”, Cement and Concrete Composites, 53, 136-147.
[8] ICHII, K., IAI, S., SATO, Y., & LIU, H. (2002). “Seismic performance evaluation charts for gravity type quay walls”, Structural Engineering/Earthquake Engineering, 19(1), 21s-31s.
[9] Kadkeri, K., & Pitilkis, K. (2010). “Seismi analysis and fragility curves of gravity waterfront structures”, In Fifth International Conference on Recent Advanced in Geotechnical Earthquake Engineering and Soil Dynamics and Symposium in Honor of Professor I.M. Idriss, San Diego, CA, Paper No. 6.04a.
[10] Ko, Y.-Y., Yang, H.-H., & Chen, C.H. (2010). “Seismic fragility analysis for sheet pile wharves – Case study of the Hualien harbor in Taiwan”, In Fifth International Conference on Recent Advanced in Geotechnical Earthquake Engineering and Soil Dynamics and Symposium in Honor of Professor I. M. Idriss, San Diego, CA, Paper No. 6.05a.
[11] Chiou, J. S., Chiang, C. H., Yang, H. H., & Hsu, S. Y. (2011). “Developing fragility curves for a pile-supported wharf”, Soil Dynamics and Earthquake Engineering, 31(5-6), 830-840.
[12] Ghosh, J., & Padgett, J. E. (2010). “Aging considerations in the development of time-dependent seismic fragility curves”, Journal of Structural Engineering, 136(12), 1497-1511.
[13] Karapetrou, S., Fotopoulou, S., & Pitilakis, K. (2013). “Consideration of aging effects on the time-dependent seismic vulnerability assessment of RC buildings”, In Vienna congress on recent advances in earthquake engineering and structural dynamics.
[14] Soltani, K. (2009). “Linear and nonlinear analysis with SAP2000 software”, (in Persian).
[15] Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms – Working Stress Design, API Recommended Practice 2A-WSD (RP 2A-WSD) Twenty-First Edition, December 2000.
[16] Amirabadi, R., Bargi, K., Dolatshahi Piroz, M., Heidary Torkamani, H., & Mccullough, N. (2014). “Determination of optimal probabilistic seismic demand models for pile-supported wharves”, Structure and Infrastructure Engineering, 10(9), 1119-1145.
Send comment about this article