[1] Soudani, K., Cerezo, V., & Haddadi, S. (2016). “Rheological characterization of bitumen modified with waste nitrile rubber (NBR)”, Construction and Building Materials, 104, 126-133.
[2] Zhang, F., & Hu, C. (2016). “The research for crumb rubber/waste plastic compound modified asphalt”, Journal of Thermal Analysis and Calorimetry, 124(2), 729-741.
[3] Wang, S., Wang, Q., Wu, X., & Zhang, Y. (2015). “Asphalt modified by thermoplastic elastomer based on recycled rubber”, Construction and Building Materials, 93, 678-684.
[4] Fang, C., Wu, C., Hu, J., Yu, R., Zhang, Z., Nie, L., & Mi, X. (2014). “Pavement properties of asphalt modified with packaging‐waste polyethylene”, Journal of vinyl and additive technology, 20(1), 31-35.
[5] Giovanni, P., Stefano, B., Dario, B., Jiri, S., & Ludovit, Z. (2005). “Asphaltmodification with different polyethylene-based polymers”, EurPolym J, 41, 2831-44.
[6] Ouyang, C., Gao, Q., Shi, Y., & Shan, X. (2012). “Compatibilizer in waste tire powder and low‐density polyethylene blends and the blends modified asphalt”, Journal of Applied Polymer Science, 123(1), 485-492.
[7] Navarro, F. J., Partal, P., García-Morales, M., Martín-Alfonso, M. J., Martinez-Boza, F., Gallegos, C., & Diogo, A. C. (2009). “Bitumen modification with reactive and non-reactive (virgin and recycled) polymers: a comparative analysis”, Journal of Industrial and Engineering Chemistry, 15(4), 458-464.
[8] Costa, L. M., Hugo, M. R., Silva, D., Oliveira, J. R., & Fernandes, S. R. (2013). “Incorporation of waste plastic in asphalt binders to improve their performance in the pavement”, International journal of pavement research and technology, 6(4), 457-464.
[9] Gonzalez, O., Munoz, M. E., Santamarıa, A., Garcıa-Morales, M., Navarro, F. J., & Partal, P. (2004). “Rheology and stability of bitumen/EVA blends”, European Polymer Journal, 40(10), 2365-2372.
[10] Padhan, R. K., Gupta, A. A., Badoni, R. P., & Bhatnagar, A. K. (2013). “Poly (ethylene terephthalate) waste derived chemicals as an antistripping additive for bitumen–An environment friendly approach for disposal of environmentally hazardous material”, Polymer degradation and stability, 98(12), 2592-2601.
[11] Pasandín, A. R., Pérez, I., Ramírez, A., & Cano, M. M. (2016). “Moisture damage resistance of hot-mix asphalt made with paper industry wastes as filler”, Journal of cleaner production, 112, 853-862.
[12] Gómez-Meijide, B., Pérez, I., & Pasandín, A. R. (2016). “Recycled construction and demolition waste in cold asphalt mixtures: evolutionary properties”, Journal of Cleaner Production, 112, 588-598.
[13] Fang, C., Liu, P., Yu, R., & Liu, X. (2014). “Preparation process to affect stability in waste polyethylene-modified bitumen”, Construction and Building Materials, 54, 320-325.
[14] Tóth, B., Varga, C., & Bartha, L. (2015). “Olefin–maleic-anhydride copolymer based additives: A novel approach for compatibilizing blends of waste polyethylene and crumb rubber”, Waste management, 38, 65-71.
[15] Yan, K., Xu, H., & You, L. (2015). “Rheological properties of asphalts modified by waste tire rubber and reclaimed low density polyethylene”, Construction and Building Materials, 83, 143-149.
[16] Goolestani Fard, F., Bahrevar, M. A., & Salahi, E. (2018). Material Characterization and analysis Method, Iran University Science and Technology.
Send comment about this article