[1] Shahsavari, H., Baghani, M., Sohrabpour, S., & Naghdabadi, R. (2016). “Continuum damage-healing constitutive modeling for concrete materials through stress spectral decomposition”, International Journal of Damage Mechanics, 25(6), 900-918.
[2] Jiang, X., & Adeli, H. (2005). “Dynamic wavelet neural network for nonlinear identification of highrise buildings”, Computer-Aided Civil and Infrastructure Engineering, 20(5), 316-330.
[3] Breiman, L. (2001). “Random forests”, Machine learning, 45(1), 5-32.
[4] Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. (2012). “An assessment of the effectiveness of a random forest classifier for land-cover classification”, ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93-104.
[5] Taha, M. R., Noureldin, A., Lucero, J. L., & Baca, T. J. (2006). “Wavelet transform for structural health monitoring: a compendium of uses and features”, Structural Health Monitoring, 5(3), 267-295.
[6] Wu, N., & Wang, Q. (2011). “Experimental studies on damage detection of beam structures with wavelet transform”, International Journal of Engineering Science, 49(3), 253-261.
[7] Yi, T. H., Li, H. N., & Sun, H. M. (2013). “Multi-stage structural damage diagnosis method based on”, Smart Structures and Systems, 12(3_4), 345-361.
[8] Cruz, P. J., & Salgado, R. (2009). “Performance of vibration-based damage detection methods in bridges”, Computer-Aided Civil and Infrastructure Engineering, 24(1), 62-79.
[9] Sun, Z., & Chang, C. C. (2002). “Structural damage assessment based on wavelet packet transform”, Journal of structural engineering, 128(10), 1354-1361.
[10] Lotfollahi-Yaghin, M. A., & Koohdaragh, M. (2011). “Examining the function of wavelet packet transform (WPT) and continues wavelet transform (CWT) in recognizing the crack specification”, KSCE Journal of Civil Engineering, 15(3), 497-506.
[11] Zhou, Q., Zhou, H., Zhou, Q., Yang, F., & Luo, L. (2014). “Structure damage detection based on random forest recursive feature elimination”, Mechanical Systems and Signal Processing, 46(1), 82-90.
[12] Chandrashekar, G., & Ferat, S. (2014). “A survey on feature selection methods”, Computers & Electrical Engineering, 40(1), 16-28.
[13] Misiti, M., Misiti, Y., Oppenheim, G., & Poggi, J. M. (2004). Matlab Wavelet Toolbox User's Guide. Version 3.
[14] Ren, W. X., Sun, Z. S., Xia, Y., Hao, H., & Deeks, A. J. (2008). “Damage identification of shear connectors with wavelet packet energy: laboratory test study”, Journal of structural engineering, 134(5), 832-841.
[15] Prakash, R., Sivakumar, E., & Srinivasan, M. (2013). “Wavelet packet transform based damage identiļ¬cation of GFRP beam”, Journal of Structural Engineering, 40(1), 44-47.
[16] Biau, G. (2012). “Analysis of a random forests model”, Journal of Machine Learning Research, 13(Apr), 1063-1095.
[17] Biau, G., Devroye, L., & Lugosi, G. (2008). “Consistency of random forests and other averaging classifiers”, Journal of Machine Learning Research, 9(Sep), 2015-2033.
[18] Quinlan, J. R. (1986). “Induction of decision trees”, Machine learning, 1(1), 81-106.
[19] Dyke, S. J., Bernal, D., Beck, J., & Ventura, C. (2003). “Experimental phase II of the structural health monitoring benchmark problem”, In Proceedings of the 16th ASCE engineering mechanics conference.
Send comment about this article