Predicting of Hydraulic Jump Characteristics of Sudden Expanding Stilling Basins Using Evolutionary Algorithm

Document Type : Original Article

Authors

1 Associate Professor, Department of Civil Engineering, University of Tabriz

2 M.Sc Student, Water Department of Civil Engineering, University of Tabriz

Abstract

Sudden expanding stilling basins are one of the energy dissipaters which can dissipate most of the kinetic energy of the flow through hydraulic jump. Accurate estimation of the hydraulic jump characteristics plays an important role in designing of hydraulic structures. Present study applies Gene Expression Programming (GEP) to estimate hydraulic jump characteristics in three different types of sudden expanding channels (i.e. channel without appurtenances, with a central sill and with a negative step). In this regard, different models were developed and tested. The results proved capability of GEP in predicting hydraulic jump characteristics in expanding channels. It was observed that the applied method is more accurate than semi-theoretical relationships. Also it was found that in the jump length prediction the model with input parameters Fr1 and (h2—h1)/h1 and in the sequent depth ratio and relative energy dissipation prediction the model with input parameters Fr1 and h1/B led to more accurate outcome. Sensitivity analysis showed that Fr1 had the key role in modeling. According to the results of the sensitivity analysis parameter Fr1 had the key role in modeling hydraulic jump characteristics.

Keywords


[1] بختیاری، م. (1387). "بررسی هیدرولیکی پارامترهای جهش هیدرولیکی در مقاطع واگرا (تبدیل‌های خروجی)"، پایان‌نامه کارشناسی ارشد، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز.
[2] Koloseus, H.J., & Ahmad, D. (1969), “Circular hydraulic jump”, Journal of the Hydraulics Division,
[3] Herbrand, K. (1970). Der räumliche Wechselsprung, Literaturstudie Bericht Nr. 18 der Versuchsanstalt für Wasserbau der Technischen Universität München, Oskar.
[4] Gupta, S.K., Mehta R.C., & Dwivedi, V.K. (2013), “Modeling of relative length and relative energy loss of free hydraulic jump in horizontal prismatic channel”, Procedia Engineering, 51, 529-537.
[5] Roushangar, K., Vojoudi, F., & Shiri, J. (2014b), “Modeling river total bed material load discharge using artificial intelligence approaches (based on conceptual inputs) ”, Journal of  Hydrology, 514, 114–122.
[6] Kisi, O., Shiri, J., & Tombul, M. (2013), “Modeling rain fall-runoff process using soft computing techniques”, Journal of Computers & Geosciences, 51, 108-117.
[7] Roushangar, K., Akhgar, S., Salmasi, F., & Shiri, J. (2014), “Modeling energy dissipation over stepped spillways using machine learning approaches”, Journal of Hydrology, 508, 254-265.
[8] Shiri, J., & Kisi, O. (2011), “Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth fluctuations", Journal of Comput. Geosci, 37(10), 1692–1701.
[9] Wang, W.C., Chau, K.W., Cheng, C.T., & Qiu, L. (2009), “A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series”, Journal of Hydrology, 374(3), 294-306.
[10] Bremen, R. (1990). Expanding Stilling Basin. Laboratoire de Constructions Hydrauliques, Communication3, Lausanne, Switzerland.
[11] Gandhi, S. (2014), “Characteristics of Hydraulic Jump”, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, 8(4), 692-697.
[12] Ferreria, C. (2001), “Gene expression programming: a new adaptive algorithm for solving problems”, Journal of Complex System, 13(2), 87–129.
[13] Elevatorski, E.A. (1980). Hydraulic Energy Dissipators. McGraw-Hill, New York.
[14] Ranga Raju, K.G., Mittal, M.K., Verma, M.S., & Ganeshan, V.R. (1980), “Analysis of Flow over Baffle Blocks and End Sills”, Journal of Hydraulic Research, 18(3), 227–241.
[15] Hager, W.H. (1992). Energy Dissipators and Hydraulic Jumps. Kluwer Academic Publication, Dordrecht, The Netherlands, pp. 151-173.
CAPTCHA Image