[1] Guz, A.N., & Dyshel, M.S. (2004). “Stability and residual strength of panels with straight and curved cracks”, Theoretical and applied fracture mechanics, 41(1), 95-101.
[2] Paik, J.K. (2008). “Residual ultimate strength of steel plates with longitudinal cracks under axial compres-sion–experiments”, Ocean engineering, 35(17), 1775-1783.
[3] Paik, J.K. (2009). “Residual ultimate strength of steel plates with longitudinal cracks under axial compres-sion—nonlinear finite element method investigations”, Ocean Engineering, 36(3), 266-276.
[4] Brighenti, R. (2010). “Influence of a central straight crack on the buckling behaviour of thin plates under tension, compression or shear loading”, International Journal of Mechanics and Materials in Design, 6(1), 73-87.
[5] Alinia, M.M., Hosseinzadeh, S.A.A., & Habashi, H.R. (2007). “Numerical modelling for buckling analysis of cracked shear panels”, Thin-Walled Structures, 45(12), 1058-1067.
[6] Alinia, M.M., Hosseinzadeh, S.A.A., & Habashi, H.R. (2007). “Influence of central cracks on buckling and post-buckling behaviour of shear panels”, Thin-Walled Structures, 45(4), 422-431.
[7] Lin, C.H., Tsai, K.C., Lin, Y.C., Wang, K.J., Qu, B., & Bruneau, M. (2007). “Full scale steel plate shear wall: NCREE/MCEER phase I tests”, In Proceeding of the 9th Canadian Conference on Earthquake Engineering, Ottawa, Ontario, Canada, 26-29.
[8] Guendel, M., Hoffmeister, B., & Feldmann M. (2011).“Experimental and numerical investigations on Steel Shear Walls for seismic Retrofitting”, Proceedings of the 8th International Conference on Structural Dynam-ics, EURODYN.
[9] Berman, J.W., & Bruneau, M. (2005). “Experimental investigation of light-gauge steel plate shear walls”, Journal of Structural Engineering, 131(2), 259-267.
[10] Kharrazi, M. (2005). “Fish plate behavior on Steel plate shear wall”, Canadian journal of civil engineer-ing, 96-108.
[11] Yaghoubshahi, M., Alinia, M.M., Testa, G., & Bonora, N. (2015). “On the postbuckling of flawed shear panels considering crack growth effect”, Thin-Walled Structures, 97, 186-198.
[12] Siegmund, T. (2004). “A numerical study of transient fatigue crack growth by use of an irreversible cohe-sive zone model”, International Journal of Fatigue, 26(9), 929-939.
[13] Roe, K. L., & Siegmund, T. (2003). “An irreversible cohesive zone model for interface fatigue crack growth simulation”, Engineering fracture mechanics, 70(2), 209-232.
[14] Bouvard, J.L., Chaboche, J.L., Feyel, F., & Gallerneau, F. (2009). “A cohesive zone model for fatigue and creep–fatigue crack growth in single crystal superalloys”, International Journal of Fatigue, 31(5), 868-879.
[15] Liu, P.F., Hou, S.J., Chu, J.K., Hu, X.Y., Zhou, C.L., Liu, Y.L., & Yan, L. (2011). “Finite element analysis of postbuckling and delamination of composite laminates using virtual crack closure technique”, Composite Structures, 93(6), 1549-1560.
[16] Fawaz, S.A. (1998). “Application of the virtual crack closure technique to calculate stress intensity factors for through cracks with an elliptical crack front”, Engineering Fracture Mechanics, 59(3), 327-342.
[17] Servetti, G., & Zhang, X. (2009). “Predicting fatigue crack growth rate in a welded butt joint: The role of effective R ratio in accounting for residual stress effect”, Engineering Fracture Mechanics, 76(11), 1589-1602.
[18] Belytschko, T., & Black, T. (1999). “Elastic crack growth in finite elements with minimal remesh-ing”, International journal for numerical methods in engineering, 45(5), 601-620.
[19] Belytschko, T., Chen, H., Xu, J., & Zi, G. (2003). “Dynamic crack propagation based on loss of hyperbolici-ty and a new discontinuous enrichment”, International journal for numerical methods in engineering, 58(12), 1873-1905.
[20] Dolbow, J.O.H.N., & Belytschko, T. (1999). “A finite element method for crack growth without remesh-ing”, International journal for numerical methods in engineering, 46(1), 131-150.
[21] Moës, N., & Belytschko, T. (2002). “Extended finite element method for cohesive crack growth”, Engineering fracture mechanics, 69(7), 813-833.
[22] Sukumar, N., Moës, N., Moran, B., & Belytschko, T. (2000). “Extended finite element method for three-dimensional crack modelling”, International Journal for Numerical Methods in Engineering, 48(11), 1549-1570.
[23] Sukumar, N., Huang, Z.Y., Prévost, J.H., & Suo, Z. (2004). “Partition of unity enrichment for bimaterial interface cracks”, International journal for numerical methods in engineering, 59(8), 1075-1102.
[24] Giner, E., Sukumar, N., Tarancon, J.E., & Fuenmayor, F.J. (2009). “An Abaqus implementation of the ex-tended finite element method”, Engineering fracture mechanics, 76(3), 347-368.
[25] Campilho, R.D.S.G., Banea, M.D., Chaves, F.J.P., & Da Silva, L.F.M. (2011). “EXtended Finite Element Method for fracture characterization of adhesive joints in pure mode I”, Computational Materials Sci-ence, 50(4), 1543-1549.
[26] Hibbitt, M. A. Karlsson & Sorensen. (2012). ABAQUS User's Manual
[27] Sabouri-Ghomi, S., Ventura, C.E., & Kharrazi, M.H. (2005). “Shear analysis and design of ductile steel plate walls”, Journal of Structural Engineering, 131(6), 878-889.
[28] Richard. H, A, Fulland. M, Sander. M., Theoretical Crack Path Prediction, Blackwell Publishing, 2004.
[29] Shukla, A. Practical fracture mechanics in design (2nd ed.). New York, NY: Marcel Dekker, 2005.
Send comment about this article