The Effect of Hydroclimatological Parameters on Urmia Lake’s Water level Using Wavelet Coherence Measure

Document Type : Original Article

Authors

1 MSc Student, Faculty of Civil Engineering, University of Tabriz

2 Assistant Professor, Faculty of Civil Engineering , University of Tabriz

Abstract

Urmia Lake is one of the vital hydrological natural quarters of Iran which has met sever water level decrease. For this issue, checking the effect of local climate factors and changes in time series would be efficient solution for studying the behavior of water system in this area.In this research wavelet coherence measure is implemented for evaluating the relations and effect of hydrological processes over many years on Urmia water level fluctuations that is powerful method for testing proposed linkages between two time series. From continuous wavelet transform of two time series, wavelet coherence transform is determined which exposes the local correlation between two CWTs and it is very helpful to uncover the locally phase locked behavior. In this way, monthly Hydroclimatological data such as rainfall, runoff of Saeed Abad station and temperature, relative humidity and monthly evaporation of Lighvan station in West Azarbaijan were investigated.The results illustrate that runoff time series has the most effect on water level of Urmia Lake and the effect of temperature, relative humidity, evaporation and rainfall are in the next priorities to runoff.

Keywords


[1]. یاراحمدی، د. (1393). "تحلیل هیدروکلیماتولوژیکی نوسان‌های سطح آب دریاچه ارومیه"، پژوهش‌های جغرافیایی طبیعی، سال46، صفحه 77-92.
[2] Kahya, E., & Kalaycı, S. (2004). Trend analysis of streamflow in Turkey. Journal of Hydrology, 289(1), 128-144.
[3] Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 245-259.
[4] Kendall, M. G. (1975). Rank Correlation Methods; Charles Griffin: London.
[5] Nourani, V., Nezamdoost, N., Samadi, M., & Vousoughi, F. D. (2015). Wavelet-based trend analysis of hydrological processes at different timescales. Journal of Water and Climate Change, 6(3), 414-435.
[6] Farge, M. (1992). Wavelet transforms and their applications to turbulence.Annual review of fluid mechanics, 24(1), 395-458.
[7] Percival, D. B., & Walden, A. T. (2006). Wavelet methods for time series analysis (Vol. 4). Cambridge university press.
[8] Walnut, D. F. (2002). An introduction to wavelet analysis. Birkhauser, Basel, Switzerand.
[9] Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series.Nonlinear processes in geophysics, 11(5/6), 561-566.
[10] Holman, I. P., Rivas-Casado, M., Bloomfield, J. P., & Gurdak, J. J. (2011). Identifying non-stationary groundwater level response to North Atlantic ocean-atmosphere teleconnection patterns using wavelet coherence.Hydrogeology Journal, 19(6), 1269-1278.
[11] Boggess, A., Narcowich, F. J. (20012). A first course in wavelets with fourier analysis. Prentice Hall, New York .
[12] Maraun, D., & Kurths, J. (2004). Cross wavelet analysis: significance testing and pitfalls. Nonlinear Processes in Geophysics, 11(4), 505-514.
[13] Gurley, K., & Kareem, A. (1999). Applications of wavelet transforms in earthquake, wind and ocean engineering. Engineering structures, 21(2), 149-167.
[14] Jevrejeva, S., Moore, J. C., & Grinsted, A. (2003). Influence of the Arctic Oscillation and El Niño‐Southern Oscillation (ENSO) on ice conditions in the Baltic Sea: The wavelet approach. Journal of Geophysical Research: Atmospheres, 108(D21).
[15] Henderson, R. D., Day‐Lewis, F. D., & Harvey, C. F. (2009). Investigation of aquifer‐estuary interaction using wavelet analysis of fiber‐optic temperature data. Geophysical Research Letters, 36(6).
[16] Ng, E. K., & Chan, J. C. (2012). Interannual variations of tropical cyclone activity over the north Indian Ocean. International Journal of Climatology,32(6), 819-830.
[17] Fang, Z., Bogena, H., Kollet, S., Koch, J., & Vereecken, H. (2015). Spatio-temporal validation of long-term 3D hydrological simulations of a forested catchment using empirical orthogonal functions and wavelet coherence analysis. Journal of hydrology, 529, 1754-1767.
[18] جلیلی، ش.،مرید،س.،لیوینگستون،د.، قنبری،ر. (1391). "مقایسه و تحلیل سری زمانی تراز آب دریاچه‌های ارومیه و وان"، مجله تحقیقات آب و خاک ایران.،دوره.43،صفحه:95-101.
[19] نورانی، و.، رنجبر، س.، توتونچی، و. (1394). "بررسی تغییرات فرآیندهای هیدرولوژیکی با استفاده از معیاره موجک–آنتروپی، مطالعه موردی: دریاچه ارومیه"، نشریه مهندسی عمران و محیط‌زیست، دوره45، صفحه 75- 86.
[20] Delju, A. H., Ceylan, A., Piguet, E., & Rebetez, M. (2013). Observed climate variability and change in Urmia Lake Basin, Iran. Theoretical and applied climatology, 111(1-2), 285-296.
[21] Fathian, F., Morid, S., & Kahya, E. (2015). Identification of trends in hydrological and climatic variables in Urmia Lake basin, Iran. Theoretical and Applied Climatology, 119(3-4), 443-464.
[22] Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis.Bulletin of the American Meteorological society, 79(1), 61-78.
[23] Labat, D. (2010). Cross wavelet analyses of annual continental freshwater discharge and selected climate indices. Journal of Hydrology, 385(1), 269-278.
[24] Nourani, V., Alami, M. T., & Vousoughi, F. D. (2016). Hybrid of SOM-Clustering Method and Wavelet-ANFIS Approach to Model and Infill Missing Groundwater Level Data. Journal of Hydrologic Engineering, 05016018.
[25] Torrence, C., & Webster, P. J. (1999). Interdecadal changes in the ENSO-monsoon system. Journal of Climate, 12(8), 2679-2690.
 [26] رسولی مجد، ن.، خلیلی،ک. "بررسی نقش تغییر اقلیم و عوامل انسانی در خشک شدن دریاچه ارومیه"، اولین همایش ملی ارزیابی مدیریت و آمایش محیط‌زیستی در ایران، همدان، انجمن ارزیابان محیط‌زیست هگمتانه، مرکز توسعه همایش‌های آریا هگمتان.
CAPTCHA Image