[1] Cai Y, Yu HS, Wanatowski D, Li X. Noncoaxial behavior of sand under various stress paths. Journal of Geotechnical and Geoenvironmental Engineering. 2013 Aug 1; 139(8): 1381-1395. doi:10.1061/(ASCE)GT.1943-5606.0000854
[2] Altuhafi, F.N., M.R. Coop, and V.N. Georgiannou, Effect of particle shape on the mechanical behavior of natural sands. Journal of Geotechnical and Geoenvironmental Engineering, 2016. 142(12): p. 04016071. doi:10.1061/(ASCE)GT.1943-5606.0001569
[3] Chen C, Gu J, Peng Z, Dai X, Liu Q, Zhu GQ. Discrete element modeling of particles sphericity effect on sand direct shear performance. Scientific Reports. 2022 Mar 31; 12(1): 5490. doi: 10.1038/s41598-022-09543-9
[4] Xiao Y, Fang Q, Stuedlein AW, Matthew Evans T. Effect of particle morphology on strength of glass sands. International Journal of Geomechanics. 2023 Aug 1; 23(8): 04023117. doi: 10.1061/IJGNAI.GMENG-8661
[5] Yang Y, Fei W, Yu HS, Ooi J, Rotter M. Experimental study of anisotropy and non-coaxiality of granular solids. Granular Matter. 2015 Apr; 17(2): 189-196. doi: 10.1007/s10035-015-0551-7
[6] He SH, Yin ZY, Ding Z, Li RD. Particle morphology and principal stress direction dependent strength anisotropy through torsional shear testing. Canadian Geotechnical Journal. 2024 Oct 16; 62: 1-23. doi: 10.1139/cgj-2023-0717
[7] Liu X, Zhang X, Kong L, Zhang S, Wang G. Experimental investigation of noncoaxial behavior of natural granite residual soil. Acta Geotechnica. 2023 Mar; 18(3): 1289-303. doi: 10.1007/s11440-022-01660-z
[8] Wadell H. Volume, shape, and roundness of rock particles. The Journal of Geology. 1932 Jul 1; 40(5): 443-4451. doi: 10.1086/624040
[9] Mitchell, J.K., Soga, K.: others: Fundamentals of soil behavior. Wiley, New York (2005).
[10] Krumbein WC, Sloss LL. Stratigraphy and sedimentation. LWW; 1951 May 1.
[11] Altuhafi F, O’Sullivan C, Cavarretta I. Analysis of an image-based method to quantify the size and shape of sand particles. Journal of Geotechnical and Geoenvironmental Engineering. 2013 Aug 1; 139(8): 1290-1307. doi: 10.1061/(ASCE)GT.1943-5606.0000855
[12] Rodriguez J, Johansson J, Edeskär T. Particle shape determination by two-dimensional image analysis in geotechnical engineering. InNordic Geotechnical Meeting: 09/05/2012-12/05/2012 2012. 207-218.
[13] Wadell H. Sphericity and roundness of rock particles. The Journal of Geology. 1933 Apr 1; 41(3): 310-331. doi: 10.1086/624040
[14] Wei LM, Yang J. On the role of grain shape in static liquefaction of sand–fines mixtures. Géotechnique. 2014 Jul; 64(9): 740-745. doi: 10.1680/geot.14.T.013
[15] Xiao Y, Long L, Matthew Evans T, Zhou H, Liu H, Stuedlein AW. Effect of particle shape on stress-dilatancy responses of medium-dense sands. Journal of Geotechnical and Geoenvironmental Engineering. 2019 Feb 1; 145(2): 04018105. doi: 10.1061/(ASCE)GT.1943-5606.0001994
[16] Zheng J, Hryciw RD. Traditional soil particle sphericity, roundness and surface roughness by computational geometry. Géotechnique. 2015 Jun; 65(6): 494-506. doi: 10.1680/geot.14.P.192
[17] Yang J, Luo XD. Exploring the relationship between critical state and particle shape for granular materials. Journal of the Mechanics and Physics of Solids. 2015 Nov 1; 84: 196-213. doi: 10.1016/j.jmps.2015.08.001
[18] Phansalkar N, More S, Sabale A, Joshi M. Adaptive local thresholding for detection of nuclei in diversity-stained cytology images. In2011 International conference on communications and signal processing 2011 Feb 10; 218-220. doi: 10.1109/ICCSP.2011.5739305
[19] Krumbein WC. Measurement and geological significance of shape and roundness of sedimentary particles. Journal of Sedimentary Research. 1941 Aug 1; 11(2): 64-72. doi: 10.1306/D42690F3-2B26-11D78648000102C1865D
[20] Zheng W, Hu X, Tannant DD. Shape characterization of fragmented sand grains via X-ray computed tomography imaging. International Journal of Geomechanics. 2020 Mar 1; 20(3): 04020003. doi: 10.1061/(asce) gm.1943-5622.0001599
[21] Bahadori H, Ghalandarzadeh A, Towhata I. Effect of non-plastic silt on the anisotropic behavior of sand. Soils and foundations. 2008; 48(4): 531-545. doi :10.3208/sandf.48.531
[22] Yoshimi Y, Tokimatsu J, Ohara AN. In situ liquefaction resistance of clean sands over a wide density range. Geotechnique. 1994 Sep; 44(3): 479-494. doi :10.1680/geot.1994.44.3.479
[23] Ladd RS. Specimen preparation and liquefaction of sands. Journal of the Geotechnical Engineering Division. 1974 Oct; 100(10): 1180-1184. doi: 10.1061/AJGEB6.0000117
[24] Amini F, Qi GZ. Liquefaction testing of stratified silty sands. Journal of geotechnical and geoenvironmental engineering. 2000 Mar; 126(3): 208-217. doi: 10.1061/(ASCE)1090-0241(2000)126:3(208)
[25] Vaid YP, Sivathayalan S, Stedman D. Influence of specimen-reconstituting method on the undrained response of sand. Geotechnical Testing Journal. 1999 Sep 1; 22(3): 187-195. doi: 10.1520/GTJ11110J
[26] Ghionna VN, Porcino D. Liquefaction resistance of undisturbed and reconstituted samples of a natural coarse sand from undrained cyclic triaxial tests. Journal of Geotechnical and Geoenvironmental Engineering. 2006 Feb; 132(2): 194-202. doi: 10.1061/(ASCE)1090-0241(2006)132:2(194)
[27] DeGregorio VB. Loading systems, sample preparation, and liquefaction. Journal of Geotechnical Engineering. 1990 May; 116(5): 805-821. doi: 10.1061/(ASCE)0733-9410(1990)116:5(805)
[28] Mulilis JP, Seed HB, Chan CK, Mitchell JK, Arulanandan K. Effects of sample preparation on sand liquefaction. Journal of the Geotechnical Engineering Division. 1977 Feb; 103(2): 91-108. doi: 10.1061/AJGEB6.0000387
[29] Cai Y. An experimental study of non-coaxial soil behaviour using hollow cylinder testing . Doctoral dissertation, University of Nottingham.
[30] Jiang M, Li L, Yang Q. Experimental investigation on deformation behavior of TJ-1 lunar soil simulant subjected to principal stress rotation. Advances in Space Research. 2013 Jul 1;52(1):136-146. doi: 10.1016/j.asr.2013.02.001
[31] Rodriguez NM, Lade PV. Non-coaxiality of strain increment and stress directions in cross-anisotropic sand. International Journal of Solids and Structures. 2014 Mar 1; 51(5): 1103-1114. doi: 10.1016/j.ijsolstr.2013.12.003
[32] Gutierrez M, Ishihara K, Towhata I. Flow theory for sand during rotation of principal stress direction. Soils and foundations. 1991 Dec 15; 31(4): 121-132. doi: 10.3208/sandf1972.31.4-121
[33] Huo Y. Micro-mechanical study of the particle shape effect on shearing of sands.
[34] Guo P, Su X. Shear strength, interparticle locking, and dilatancy of granular materials. Canadian Geotechnical Journal. 2007 May 1; 44(5): 579-591. doi: 10.1139/t07-010
[35] Cresswell A, Powrie W. Triaxial tests on an unbonded locked sand. Géotechnique. 2004 Mar; 54(2): 107-115. doi: 10.1680/geot.2004.54.2.107
[36] Cuccovillo T, Coop MR. On the mechanics of structured sands. Géotechnique. 1999 Dec; 49(6): 741-760. doi: 10.1680/geot.1999.49.6.741
[37] Cresswell AW, Barton ME. Direct shear tests on an uncemented, and a very slightly cemented, locked sand. Quarterly Journal of Engineering Geology and Hydrogeology. 2003 May 1; 36(2): 119-132. doi: 10.1144/1470-923601-042
[38] Ding Z, Chen Y, He SH, Sun MM. Investigating the long-term deformation behaviour and non-coaxiality of siliceous sand under traffic cyclic loading. Construction and Building Materials. 2023 Dec 8; 408: 133672. doi: 10.1016/j.conbuildmat.2023.133672
[39] Chang J, Li S, Wang W, Niu Q. A study of non-coaxial effects on strain localization via micropolar plasticity model. Acta Geotechnica. 2022 Mar; 17(3): 721-739. doi: 10.1007/s11440-021-01291-w
[40] Triantafyllos PK, Georgiannou VN, Georgopoulos IO. Novel insights into the dilatancy and non-coaxiality of sand under generalised constant-η loading. Acta Geotechnica. 2025 Mar; 20(3): 1103-1139. doi: 10.1007/s11440-024-02465-y
Send comment about this article