Experimental Investigation of Stress Relaxation Behavior in Sand and Sand-Geotextile Interface

Document Type : Original Article

Authors

1 , Assistant Professor, Department of Civil Engineering, Marand Technical Gollege. University of Tabriz, Tabriz, Iran.

2 Assistant Professor, Department of Fundamental Sciences, Marand Technical Gollege. University of Tabriz, Tabriz, Iran.

Abstract

In this research, the phenomenon of stress relaxation in unreinforced and reinforced sandy soil with geotextile layer has been studied using a large-scale direct shear test. To investigate the effect of shear speed and soil density on the amount of resistance loss due to stress relaxation, two shear speeds of 0.5 and 5 mm/min and two relative densities of 35% and 60%, respectively, loose and medium density, have been used. All samples have been tested in direct shear test under vertical stress of 100 kPa. The results show that the amount of resistance loss due to stress relaxation depends on the shear stress level, soil density, presence of a geotextile layer in the soil and shear speed. In such a way that by increasing the level of shear stress and shear speed and by decreasing the density of sand and also with the presence of a geotextile layer in soil, the amount of resistance loss due to stress relaxation increases.

Keywords

Main Subjects


[1] Mesri, G., Feng, T. W., & Benak, J. M. (1990). Postdensification penetration resistance of clean sands. Journal of Geotechnical Engineering, ASCE, 116(7), 1095-1115. doi: 10.1061/(ASCE)0733-9410(1990)116:7(1095)
[2] Schmertmann, J.H. (1987). Discussion to " Time-dependent strength gain in freshly deposited or densified sand by mitchell and solymar. Journal of Geotechnical Engineering, ASCE, 113(2), 173-175. doi: 10.1061/(ASCE)0733-9410(1987)113:2(173)
[3] Mitchell, J.K., & Solymar, Z.V. (1984). Time-dependent strength gain in freshly deposited or densified sand. Journal of Geotechnical Engineering, ASCE, 110(11), 1559-1575. doi: 10.1061/(ASCE)0733-9410(1984)110:11(1559)
[4] Lade, P. V. (2012). Experimental study and analysis of creep and stress relaxation in granular materials. Advances in Measurement and Modeling of Soil Behavior, 236(15), 1-11. doi: 10.1061/40917(236)15
[5] Lade, P. V., Liggio Jr, C. D., & Nam, J. (2009). Strain rate, creep, and stress drop-creep experiments on crushed coral sand. Journal of Geotechnical and Geoenvironmental Engineering, 135(7), 941-953. doi: 10.1061/(ASCE)GT.1943-5606.0000067
[6] Lade, P. V., Liggio Jr, C. D., & Nam, J. (2010). Effects of particle crushing in stress drop-relaxation experiments on crushed coral sand. Journal of Geotechnical and Geo-environmental Engineering, 136(3), 500-509. doi: 10.1061/(ASCE)GT.1943-5606.0000212
[7] Liingaard, M., Augustesen, A., & Lade, P. V. (2004). Characterization of models for time-dependent behavior of soils. International Journal of Geomechanics, 4(3), 157–177. doi: 10.1061/(ASCE)1532-3641(2004)4:3(157)
[8] Sheahan, T. C., & Kaliakin, V. N. (1999). Microstructural considerations and validity of the correspondence principle for cohesive soils. Engineering Mechanics, Proceedings, 13th Conference, edited by N. Jones and R. Ghanem. Baltimore: ASCE.
[9] Borja, R. I. (1992). Generalized creep and stress relaxation model for clays. Journal of Geotechnical Engineering, 118(11), 1765-1786. doi: 10.1061/(ASCE)0733-9410(1992)118:11(1765)
[10] Casagrande, A., & Shannon, W.L. (1949). Strength of soils under dynamic loads. Transactions of the American Society of Civil Engineers, 114(1), 591–632. doi: 10.1061/TACEAT.0006198
[11] Tatsuoka, F., Santucci de Magistris, F., Hayano, K., Momoya, Y., & Koseki, J. (2000). Some new aspects of time effects on the stress-strain behaviour of stiff geomaterials. The geotechnics of hard soils-soft rocks, 2, 1285–1371. 
[12] Tatsuoka, F., Ishihara, M., di Benedetto, H., & Kuwano, R. (2002). Time-dependent shear deformation characteristics of geomaterials and their simulation. Soils and Foundations, 42(2), 103–129. doi: 10.3208/sandf.42.2_103
[13] Tatsuoka, F., Enomoto, T., & Kiyota, T. (2012). Viscous property of geomaterial in drained shear. Geomechanics II – Testing, Modeling and Simulation, 156, 285–312. doi: 10.1061/40870(216)20
[14] Kuwano, R., & Jardine, R.J. (2002). On measuring creep behaviour in granular materials through triaxial testing. Canadian Geotechnical Journal, 39(5), 1061–1074. doi: 10.1139/t02-059
[15] Di Benedetto, H., Tatsuoka, F., Lo Presti, D., Sauzéat, C., & Geoffroy, H. (2005). Time effects on the behaviour of geomaterials. Keynote Lecture. In Proceedings of the 3rd International Symposium on Deformation Characteristics of Geomaterials, 2, 59–123. 
[16] Augustesen, A., Liingaard, M., & Lade, P.V. (2004). Evaluation of time-dependent behavior of soils. International Journal of Geomechanics, 4(3), 137–156. doi: 10.1061/(ASCE)1532-3641(2004)4:3(137)
[17] Karimpour, H., & Lade, P.V. (2010). Time effects relate to crushing in sand. Journal of Geotechnical and Geoenvironmental Engineering, 136(9), 1209–1219. doi: 10.1061/(ASCE)GT.1943-5606.0000335
[18] Karimpour, H., & Lade, P.V. (2013). Creep behavior in Virginia Beach sand. Canadian Geotechnical Journal, 50(11), 1159–1178. doi: 10.1139/cgj-2012-0467
[19] Lade, P.V., & Karimpour, H. (2010). Static fatigue controls particle crushing and time effects in granular materials. Soils and Foundations, 50(5), 573–583. doi: 10.3208/sandf.50.573
[20] Lade, P.V., Liggio, C.D., Jr., & Nam, J. (2009). Strain rate, creep, and stress drop-creep experiments on crushed coral sand. Journal of Geotechnical and Geoenvironmental Engineering, 135(7), 941–953. doi: 10.1061/(ASCE)GT.1943-5606.0000067
[21] Karimpour, H. (2012). Time effects in relation to crushing in Sand, Ph.D. Dissertation, Department of Civil Engineering, The Catholic University of America, Washington, D.C.
[22] Lacerda, W.A. (1976). Stress-relaxation and creep effects on soil deformation, Ph.D. Dissertation, University of California, Berkeley, Calif.
[23] Lacerda, W.A. & Houston, W.N. (1973). Stress relaxation in soils. In Proceedings of the 8th International Conference, Soil Mechanics and Foundation Engineering, 1, 221–227. 
[24] Murayama, S., & Shibata, T. (1961). Rheological properties of clays. In Proceedings of the 5th International Congress on Soil Mechanics and Foundations, Paris, 269–273.
[25] Vialov, S., & Skibitsky, A. (1961). Problems of the rheology of soils. In Proceedings of the 5th International Congress on Soil Mechanics and Foundation Engineering, Paris, 387–392.
[26] Saada, A.S. (1962). A rheological analysis of shear and consolidation of saturated clays. Highway Research Board Bulletin, 342, 52–75. 
[27] Lo, K.Y. (1969). The pore pressure - strain relationship of normally consolidated undisturbed clays: Part II. Experimental investigation and practical applications. Canadian Geotechnical Journal, 6(4), 395–412. doi: 10.1139/t69-041
[28] Ladanyi, B., & Benyamina, M.B. (1995). Triaxial relaxation testing of a frozen sand. Canadian Geotechnical Journal, 32(3), 496–511. doi: 10.1139/t95-052
[29] Lade, P.V., Nam, J., & Liggio Jr, C.D. (2010). Effects of particle crushing in stress drop-relaxation experiments on crushed coral sand. Journal of Geotechnical and Geoenvironmental Engineering, 136(3), 500–509. doi: 10.1061/(ASCE)GT.1943-5606.0000212
[30] Tatsuoka, F., Di Benedetto, H., Enomoto, T., Kawabe, S., & Kongkitkul, W. (2008). Various viscosity types of geomaterials in shear and their mathematical expression. Soils and Foundations, 48(1), 41–60. doi: 10.3208/sandf.48.41
[31] Pham Van Bang, D., Di Benedetto, H., Duttine, A., & Ezaoui, A. (2007). Viscous behavior of dry sand.  International Journal for Numerical and Analytical Methods in Geomechanics, 31 (15), 1631-1658. doi: 10.1002/nag.606
[32] Wu, W., Wang, X.T., & Aschauer, F. (2008). Investigation on failure of a geosynthetic lined reservoir. Geotextiles and Geomembranes, 26(4), 363-370. doi: 10.1016/j.geotexmem.2007.12.001
[33] Lee, K.M., & Manjunath, V.R., (2000). Soil-geotextile interface friction by direct shear tests. Canadian Geotechnical Journal, 37(1), 238-252. doi: 10.1139/t99-124
[34] Bergado, D.T., Ramana, G.V., Sia, H.I., & Varun, V. (2006). Evaluation of  interface shear strength of composite liner system and stabilty analysis for at and filling system in Thailand. Geotextiles and Geomembranes, 24(6), 371-393. doi: 10.1016/j.geotexmem.2006.04.001
[35] ASTM D 5321-02. (2002). Standard test method for determining the coefficient of soil and geosynthetic or geosynthetic and geosynthetic friction by the direct shear method. American Society for Testing of Materials, West Conshohocken, PA, USA. doi: 10.1520/D5321-02
[36] Richards, E.A., & Scott, J.D. (1985). Soil geotextile frictional properties. Second Canadian Symposium on Geotextiles and Geomembranes, Edmonton, 13-24. 
[37] Jewell, R.A., Milligan, G.W.E., Sarsby, R.W., & Dubois, D. (1985). Interaction between soil and geogrids.  Proc. Conference of Polymer Grid Reinforcement, London, 18-29.
[38] Lade, P.V., & Karimpour, H. (2016).  Stress drop effects in time dependent behavior of quartz sand. International Journal of Solids and Structures, 87, 167-182. doi: 10.1016/j.ijsolstr.2016.02.015
[39] Augustesen, A., Liingaard, M., & Lade, P.V. (2004). Evaluation of time-dependent behavior of soils. International Journal of Geomechanics, ASCE, 4(3), 137-156. doi: 10.1061/(ASCE)1532-3641(2004)4:3(137)
[40] Tong, F., & Yin,  J.H.  (2013).  Experimental  and  constitutive modeling of relaxation behaviors of three clayey soils. Journal of  Geotechnical  and  Geoenvironmental  Engineering ASCE, 139(11), 1973-1981. doi: 10.1061/(ASCE)GT.1943-5606.0000926
[41] Bagheri, M., Rezania, M., & Nezhad, M.M. (2019). Rate dependency and stress relaxation of unsaturated clays. International Journal of Geomechanics, ASCE, 19(12), 04019128. doi: 10.1061/(ASCE)GM.1943-5622.0001507
[42] Komurlu, E., & Çelik, A. G. (2022). An experimental study on stress relaxation behaviour of cement stabilized sands. Journal of GeoEngineering, 17(4), 189-194. doi: 10.6310/jog.202212_17(4).2
[43] Wang, J., & Xia, Z. (2021). DEM study of creep and stress relaxation behaviors of dense sand. Computers and Geotechnics, 134, 104142. doi: 10.1016/j.compgeo.2021.104142
CAPTCHA Image