The Study of the Effect of Drainage Conditions on the Collapse Potential of Soil

Document Type : Original Article

Authors

1 PhD., Faculty of Civil Engineering, University of Yazd, Yazd, Iran.

2 Associate Professor, Faculty of Civil Engineering, University of Yazd, Yazd, Iran.

Abstract

Collapsible soils are one of the problematic soils, as they exhibit good stability in dry conditions but undergo sudden and significant settle-ments upon water entry. The surrounding layers of collapsible soil can be either permeable or impermeable, but the existing devices for determining the collapse potential lack the ability to model the drain-age conditions around the collapsible soil layer. In this study, an ap-paratus capable of modeling drainage conditions was constructed. A collapsible soil was made in laboratory, and its collapse potential was determined using single and double oedometer tests as well as the constructed apparatus. The results show that drainage conditions are an influential factor on the behavior of collapsible soils. The col-lapse potential obtained from this apparatus is lower than the col-lapse potential obtained from the oedometer test. The comparison of the two conditions with drainage and without drainage in two point and wide water distributions shows that in both water distributions, the collapse potential is higher in the condition with drainage than in the condition without drainage. For example, in the point distribution, the collapse potential with drainage is 27.7% higher than the without drainage, while in the wide distribution, it is 19.5%higher.

Keywords

Main Subjects


[1] Barden L, McGown A, Collins K. The collapse mechanism in partly saturated soil. Engineering Geology. 1973 Jun 1; 7(1): 49-60. doi: 10.1016/0013-7952(73)90006-9
[2] Lutenegger AJ, Saber RT. Determination of collapse potential of soils. Geotechnical Testing Journal. 1988 Sep 1; 11(3): 173-178. doi: 10.1520/GTJ10003J 
[3] Assadi Langroudi A. Micromechanics of collapse in loess. Doctoral dissertation. 2014. University of Birmingham. 
[4] Qian ZZ, Lu XL, Yang WZ, Cui Q. Behaviour of micropiles in collapsible loess under tension or compression load. Geomechanics and Engineering. 2014; 7(5): 477-493. doi: 10.12989/gae.2014.7.5.477
[5] Mansour ZM, Chik Z, Taha MR. On the procedures of soil collapse potential evaluation. Journal of Applied Sciences. 2008 Nov 15; 8(23): 4434-4439. doi: 10.3923/jas.2008.4434.4439
[6] Mahmood MS, Abrahim MJ. A review of collapsible soils behavior and prediction. InIOP Conference Series: Materials Science and Engineering. 2021 Feb 1; 1094(1): 012044. doi: 10.1088/1757-899X/1094/1/012044
[7] Qureshi MU, Mahmood Z, Farooq QU, Qureshi QB, Al-Handasi H, Chang I. Engineering characteristics of dune sand-fine marble waste mixtures. Geomechanics and Engineering. 2022; 28(6): 547-557. doi: 10.12989/gae.2022.28.6.547
[8] Clemence SP, Finbarr AO. Design considerations for collapsible soils. Journal of the Geotechnical Engineering Division. 1981 Mar; 107(3): 305-317. doi: 10.1061/AJGEB6.0001102
[9] Osipov VI, Sokolov VN. Factors and mechanism of loess collapsibility. InGenesis and properties of collapsible soils. 1995; 468: 49-63. doi: 10.1007/978-94-011-0097-7_4
[10] Milodowski AE, Northmore KJ, Kemp SJ, Entwisle DC, Gunn DA, Jackson PD, Boardman DI, Zoumpakis A, Rogers CD, Dixon N, Jefferson I. The mineralogy and fabric of ‘Brickearths’ in Kent, UK and their relationship to engineering behaviour. Bulletin of Engineering Geology and the Environment. 2015 Nov; 74: 1187-211. doi: 10.1007/s10064-014-0694-5
[11] Li P, Vanapalli S, Li T. Review of collapse triggering mechanism of collapsible soils due to wetting. Journal of Rock Mechanics and Geotechnical Engineering. 2016 Apr 1; 8(2): 256-274. doi: 10.1016/j.jrmge.2015.12.002
[12] Klukanova A, Sajgalik J. Changes in loess fabric caused by collapse: an experimental study. Quaternary International. 1994 Jan 1; 24: 35-39. doi: 10.1016/1040-6182(94)90036-1
[13] Rogers CD, Dijkstra TA, Smalley IJ. Hydroconsolidation and subsidence of loess: studies from China, Russia, North America and Europe: in memory of Jan Sajgalik. Engineering Geology. 1994 Jun 1; 37(2): 83-113. doi: 10.1016/0013-7952(94)90045-0
[14] John B, Tim C, Hilary S. ICE manual of geotechnical engineering. In: Thomas Telford Ltd. 2012.
[15] Zimbardo M, Ercoli L, Megna B. The open metastable structure of a collapsible sand: fabric and bonding. Bulletin of Engineering Geology and the Environment. 2016 Feb; 75: 125-139. doi: 10.1007/s10064-015-0752-7
[16] Bakir N, Abbeche K, Panczer G. Experimental study of the effect of the glass fibers on reducing collapse of a collapsible soil. Geomechanics and Engineering. 2017 Jan 1; 12(1): 71-83. doi: 10.12989/gae.2017.12.1.071
[17] Mitchell JK, Soga K. Fundamentals of soil behavior. New York: John Wiley & Sons; 2005 May 25.
[18] Nouaouria MS, Guenfoud M, Lafifi B. Engineering properties of loess in Algeria. Engineering Geology. 2008 Jun 9; 99(1-2): 85-90. doi: 10.1016/j.enggeo.2008.01.013
[19] Gaaver KE. Geotechnical properties of Egyptian collapsible soils. Alexandria Engineering Journal. 2012 Sep 1; 51(3): 205-210. doi: 10.1016/j.aej.2012.05.002
[20] Yuan KZ, Ni WK, Lü XF, Wang HM. Effect of water distribution on shear strength of compacted loess. Geomechanics and Engineering. 2022 Jan 1; 31(5): 519-527. doi: 10.12989/gae.2022.31.5.519
[21] Wheeler SJ, Sharma RS, Buisson MS. Coupling of hydraulic hysteresis and stress–strain behaviour in unsaturated soils. Géotechnique. 2003 Feb; 53(1): 41-54. doi: 10.1680/geot.2003.53.1.41
[22] Pereira JH, Fredlund DG, Cardão Neto MP, Gitirana Jr GD. Hydraulic behavior of collapsible compacted gneiss soil. Journal of geotechnical and geoenvironmental engineering. 2005 Oct; 131(10): 1264-1273. doi: 10.1061/(ASCE)1090-0241(2005)131:10(1264)
[23] Medero GM, Schnaid F, Gehling WY. Oedometer behavior of an artificial cemented highly collapsible soil. Journal of Geotechnical and Geoenvironmental Engineering. 2009 Jun; 135(6): 840-843. doi: 10.1061/(ASCE)1090-0241(2009)135:6(840)
[24] Rezaei M, Ajalloeian R, Ghafoori M. Geotechnical properties of problematic soils emphasis on collapsible cases. International Journal of Geosciences. 2012 Feb 28; 3(1): 105-110. doi: 10.4236/ijg.2012.31012
[25] Alassal MA, Hassan AM, Elmamlouk HH. Effect of Fines and Matric Suction on the Collapsibility of Sandy Soils. In: Pinto, P., Ou, CY., Shehata, H. (eds) Innovative Solutions for Deep Foundations and Retaining Structures. GeoMEast 2019. Sustainable Civil Infrastructures. Springer, Cham. 2020; 61-72. doi: 10.1007/978-3-030-34190-9_6
[26] Mahmood MS, Akhtarpour A, Almahmodi R, Husain MM. Settlement assessment of gypseous sand after time-based soaking. InIOP Conference Series: Materials Science and Engineering 2020 Feb 1; 737(1): 012080. doi: 10.1088/1757-899X/737/1/012080
[27] Guo Y, Ni W, Liu H. Effects of dry density and water content on compressibility and shear strength of loess. Geomechanics and Engineering. 2021; 24(5): 419-430. doi: 10.12989/gae.2021.24.5.419
[28] Mahmoudi J, Pourhosseini R. Large-scale Apparatus for Measurement of Collapse Potential of Soils with Simulating the Pattern of Water Infiltration Ability. Amirkabir Journal of Civil Engineering. 2023 Feb 20; 54(12): 4809-4826. doi: 10.22060/ceej.2022.21524.7755 [In Persian]
[29] Houston SL, Houston WN, Zapata CE, Lawrence C. Geotechnical engineering practice for collapsible soils. Unsaturated soil concepts and their application in geotechnical practice. 2001: 333-55. doi: 10.1007/978-94-015-9775-3_6
[30] Hosseini A, Haeri SM, Mahvelati S, Fathi A. Feasibility of using electrokinetics and nanomaterials to stabilize and improve collapsible soils. Journal of Rock Mechanics and Geotechnical Engineering. 2019 Oct 1; 11(5): 1055-1065. doi: 10.1016/j.jrmge.2019.06.004
[31] Al-Obaidi QA, Karim HH, Al-Shamoosi AA. Collapsibility of gypseous soil under suction control. InIOP conference series: materials science and engineering 2020 Feb 1; 737(1): 012103. doi: 10.1088/1757-899X/737/1/012103
[32] Alawaji HA. Leak induced settlement of buried pipelines in collapsible soil. InPipelines 2008: Pipeline Asset Management: Maximizing Performance of our Pipeline Infrastructure 2008; 1-10. doi: 10.1061/40994(321)19
[33] Vandanapu R, Omer JR, Attom MF. Laboratory simulation of irrigation-induced settlement of collapsible desert soils under constant surcharge. Geotechnical and Geological Engineering. 2017 Dec; 35: 2827-2840. doi: 10.1007/s10706-017-0282-0
[34] Mashhour I, Hanna A. Drag load on end-bearing piles in collapsible soil due to inundation. Canadian Geotechnical Journal. 2016; 53(12): 2030-2038. doi: 10.1139/cgj-2015-0548
[35] Hanna A, Soliman S. Experimental investigation of foundation on collapsible soils. Journal of Geotechnical and Geoenvironmental Engineering. 2017 Nov 1; 143(11): 04017085. doi: 10.1061/(ASCE)GT.1943-5606.0001750
[36] Yan CG, Wan Q, Xu Y, Xie Y, Yin P. Experimental study of barrier effect on moisture movement and mechanical behaviors of loess soil. Engineering Geology. 2018 Jun 5; 240: 1-9. doi: 10.1016/j.enggeo.2018.04.007
[37] Jennings J. A Guide to Construction on or With Materials Exhibiting Additonal Settlement Due to Collapse of Grain Structure. Soil Mech, Conference Africa. 1975; 1: 99-105.
[38] Mahmoudian H, Hashemi M, Ajalloeian R, Movahedi B. Investigating the effect of additives’ size on the improvement of the tensile and compressive strengths and deformation characteristics of collapsible soils. Environmental Earth Sciences. 2020 Jul; 79(13): 328. doi: 10.1007/s12665-020-09085-1
[39] Opukumo AW, Davie CT, Glendinning S, Oborie E. A review of the identification methods and types of collapsible soils. Journal of Engineering and Applied Science. 2022 Dec; 69(1): 1-21. doi: 10.1186/s44147-021-00064-2
[40] Ayadat T, Hanna A. Prediction of collapse behaviour in soil. Revue européenne de génie civil. 2007 May 1; 11(5): 603-619. doi: 10.1080/17747120.2007.9692947
[41] Zorlu K, Kasapoglu KE. Determination of geomechanical properties and collapse potential of a caliche by in situ and laboratory tests. Environmental Geology. 2009 Feb; 56: 1449-1459. doi: 10.1007/s00254-008-1239-7
[42] Noor ST, Hanna A, Mashhour I. Numerical modeling of piles in collapsible soil subjected to inundation. International Journal of Geomechanics. 2013 Oct 1; 13(5): 514-526. doi: 10.1061/(ASCE)GM.1943-5622.0000235
[43] Lawton EC, Fragaszy RJ, Hardcastle JH. Collapse of compacted clayey sand. Journal of Geotechnical Engineering. 1989 Sep; 115(9): 1252-1267. doi: 10.1061/(ASCE)0733-9410(1989)115:9(1252)
[44] ASTM D5333. Standard Test Methods for Measurement of Collapse Potential of Soils. In ASTM D5333: Annual Book of ASTM Standards. 2003.
[45] Al-Amoudi OS, Abduljauwad SN. Compressibility and collapse characteristics of arid saline sabkha soils. Engineering Geology. 1995 Jun 1; 39(3-4): 185-202. doi: 10.1016/0013-7952(95)00016-9
[46] Matyas EL, Radhakrishna HS. Volume change characteristics of partially saturated soils. Geotechnique. 1968 Dec; 18(4): 432-448. doi: 10.1680/geot.1968.18.4.432
[47] Barden L, Madedor AO, Sides GR. Volume change characteristics of unsaturated clay. Journal of the Soil Mechanics and Foundations Division. 1969 Jan; 95(1): 33-51. doi: 10.1061/JSFEAQ.0001226
[48] Tadepalli R, Rahardjo H, Fredlund DG. Measurements of matric suction and volume changes during inundation of collapsible soil. Geotechnical Testing Journal. 1992 Jun 1; 15(2): 115-122. doi: 10.1520/GTJ10233J 
[49] Haeri SM, Zamani A, Garakani AA. Collapse potential and permeability of undisturbed and remolded loessial soil samples. InUnsaturated Soils: Research and Applications. 2012; 1: 301-308. doi: 10.1007/978-3-642-31116-1_41
[50] Maatouk A, Leroueil S, La Rochelle P. Yielding and critical state of a collapsible unsaturated silty soil. Géotechnique. 1995 Sep; 45(3): 465-477. doi: 10.1680/geot.1995.45.3.465
[51] Sun DA, Sheng DC, Cui HB, Sloan SW. A density‐dependent elastoplastic hydro‐mechanical model for unsaturated compacted soils. International journal for numerical and analytical methods in geomechanics. 2007 Sep; 31(11): 1257-1279. doi: 10.1002/nag.579
[52] Haeri SM, Akbari Garakani A, Khosravi A, Meehan CL. Assessing the hydro-mechanical behavior of collapsible soils using a modified triaxial test device. Geotechnical Testing Journal. 2014 Mar 1; 37(2): 190-204. doi: 10.1520/GTJ20130034
[53] Ayadat T, Hanna A. Identification of collapsible soil using the fall cone apparatus. Geotechnical Testing Journal. 2007 Jul 1; 30(4): 312-323. doi: 10.1520/GTJ14193
[54] Evans RD, Jefferson I, Kevin JN, Jackson P. In-situ investigation of problematical soils. In Advances in geotechnical engineering: The Skempton conference. 2004; 1269-1279.
[55] Watts K, Charles JA. Building on fill: geotechnical aspects. IHS BRE Press Bracknell, UK. 2015.
[56] Mahmoud HH, Houston WN, Houston SL. Apparatus and procedure for an in situ collapse test. Geotechnical Testing Journal. 1995 Dec 1; 18(4): 431-440. doi: 10.1520/GTJ11018J
[57] Mohammadi SD, Ajalloeian R. Investigation of Desirability of Sand Pluviation Technique in order to Sample Making of Sandy Soils for Laboratory Models. Modares Civil Engineering journal. 2014 Jan 10; 13(5): 53-63. [In Persian]
[58] El Howayek A, Huang PT, Bisnett R, Santagata MC. Identification and behavior of collapsible soils. Purdue University. Joint Transportation Research Program; 2011 Jan 1.
CAPTCHA Image