[1] Lignos, D. G., Putman, C., & Krawinkler, H. (2015). Application of simplified analysis procedures for performance-based earthquake evaluation of steel special moment frames, Earthquake Spectra, 31(4), 1949-1968. doi: 10.1193/081413EQS230M
[2] Li, X., & Kurata, M. (2019). Probabilistic updating of fishbone model for assessing seismic damage to beam–column connections in steel moment‐resisting frames, Computer‐Aided Civil and Infrastructure Engineering, 34(9), 790-805. doi: 10.1111/mice.12429
[3] Vaseghiamiri, S., Mahsuli, M., Ghannad, M. A., & Zareian, F. (2020). Surrogate SDOF models for probabilistic performance assessment of multistory buildings: Methodology and application for steel special moment frames”, Engineering Structures, 212, 110276. doi: 10.1016/j.engstruct.2020.110276
[4] Joyner, M. D., & Sasani, M. (2020). Building performance for earthquake resilience, Engineering Structures, 210, 110371. doi: 10.1016/j.engstruct.2020.110371
[5] Qu, Z., Gong, T., Wang, X., Li, Q., & Wang, T. (2020). Stiffness and strength demands for pin-supported walls in reinforced-concrete moment frames, Journal of Structural Engineering, 146(9), 04020181. doi: 10.1061/(ASCE)ST.1943-541X.0002758
[6] Pourali, N., Khosravi, H., & Dehestani, M. (2019). An investigation of P-delta effect in conventional seismic design and direct displacement-based design using elasto-plastic SDOF systems, Bulletin of Earthquake Engineering, 17, 313-336. doi: 10.1007/s10518-018-0460-3
[7] Hajimohammadi, M., Khosravi, H., & Dezvareh, R. (2022). P-Delta Effect on Residual Displacement and Collapse Capacity of SDOF Systems during Long and Short Duration Earthquakes. Civil Infrastructure Researches, 7(2), 51-60. doi: 10.22091/cer.2021.7289.1290 [In Persian]
[8] Lai, M., Li, Y., & Zhang, C. (1992). Analysis method of multi-rigid-body model for earthquake responses of shear-type structure”. In Proc., 10th WCEE conf, 4013-4018.
[9] Hajirasouliha, I., & Doostan, A. (2010). A simplified model for seismic response prediction of concentrically braced frames, Advances in Engineering Software, 41(3), 497-505. doi: 10.1016/j.advengsoft.2009.10.008
[10] Iwan, W. D. (1997). Drift spectrum: measure of demand for earthquake ground motions. Journal of structural engineering, 123(4), 397-404. doi: 10.1061/(ASCE)0733-9445(1997)123:4(397)
[11] Huang, C. T. (2003). Considerations of multimode structural response for near-field earthquakes, Journal of engineering mechanics, 129(4), 458-467. doi: 10.1061/(ASCE)0733-9399(2003)129:4(458)
[12] Miranda, E. (1997). Estimation of maximum interstory drift demands in displacement-based design, Rotterdam: Balkema, 253-264.
[13] Miranda, E. (1999). Approximate seismic lateral deformation demands in multistory buildings, Journal of Structural Engineering, 125(4), 417-425. doi: 10.1061/(ASCE)0733-9445(1999)125:4(417)
[14] Miranda, E., & Reyes, C. J. (2002). Approximate lateral drift demands in multistory buildings with nonuniform stiffness, Journal of Structural Engineering, 128(7), 840-849. doi: 10.1061/(ASCE)0733-9445(2002)128:7(840)
[15] Miranda, E., & Akkar, S. D. (2006). Generalized interstory drift spectrum, Journal of structural engineering, 132(6), 840-852. doi: 10.1061/(ASCE)0733-9445(2006)132:6(840)
[16] Khaloo, A. R., & Khosravi, H. (2008). Multi-mode response of shear and flexural buildings to pulse-type ground motions in near-field earthquakes, Journal of Earthquake Engineering, 12(4), 616-630. doi: 10.1080/13632460701513132
[17] Luco, N., Mori, Y., Funahashi, Y., Allin Cornell, C., & Nakashima, M. (2003). Evaluation of predictors of non‐linear seismic demands using ‘fishbone’models of SMRF buildings, Earthquake engineering & structural dynamics, 32(14), 2267-2288. doi: 10.1002/eqe.331
[18] Soleimani, R., & Hamidi, H. (2021). General Substitute Frame Model (GSF) for efficient estimation of seismic demands of steel and RC moment frames, Engineering Structures, 246, 113031. doi: 10.1016/j.engstruct.2021.113031
[19] Khaloo, A. R., & Khosravi, H. (2013). Modified fish-bone model: A simplified MDOF model for simulation of seismic responses of moment resisting frames, Soil Dynamics and Earthquake Engineering, 55, 195-210. doi: 10.1016/j.soildyn.2013.09.013
[20] Soleimani, R., Khosravi, H., & Hamidi, H. (2019). Substitute Frame and adapted Fish-Bone model: Two simplified frames representative of RC moment resisting frames, Engineering Structures, 185, 68-89. doi: 10.1016/j.engstruct.2019.01.127
[21] Khaloo, A. R., Khosravi, H., & Jamnani, H. H. (2015). Nonlinear interstory drift contours for idealized forward directivity pulses using “modified fish-bone” models, Advances in Structural Engineering, 18(5), 603-627. doi: 10.1260/1369-4332.18.5.603
[22] Ghaderi, P., Khosravi, H., & Firoozjaee, A. R. (2020). Consideration of strength-stiffness dependency in the determination of lateral load pattern, Soil Dynamics and Earthquake Engineering, 137, 106287. doi: 10.1016/j.soildyn.2020.106287
[23] Farzaneh, S., & Khosravi, H. (2022). Robustness evaluation of Substitute Frame for determination of collapse margin ratio in steel moment frames, Journal of Steel and Structure, 16 (35), 79-90. [In Persian]
[24] Haghighat, A., & Sharifi, A. (2018). Evaluation of Modified Fish-Bone Model for Estimating Seismic Demands of Irregular MRF Structures, Periodica Polytechnica Civil Engineering, 62(3), 800-811. doi: 10.3311/PPci.11640
[25] Qu, Z., Gong, T., Li, Q., & Wang, T. (2019). Evaluation of the fishbone model in simulating the seismic response of multistory reinforced concrete moment-resisting frames, Earthquake Engineering and Engineering Vibration, 18, 315-330. doi: 10.1007/s11803-019-0506-9
[26] Jamšek, A., & Dolšek, M. (2020). Seismic analysis of older and contemporary reinforced concrete frames with the improved fish-bone model, Engineering Structures, 212, 110514. doi: 10.1016/j.engstruct.2020.110514
[27] Soleimani, R., & Hamidi, H. (2021). Improved Substitute-Frame (ISF) model for seismic response of steel-MRF with vertical irregularities. Journal of Constructional Steel Research, 186, 106918. doi: 10.1016/j.jcsr.2021.106918
[28] Haselton, C. B., & Deierlein, G. G. (2008). Assessing seismic collapse safety of modern reinforced concrete moment-frame buildings, PEER report 2007/08. University of California, Berkeley, CA.
[29] Mazzoni, S., McKenna, F., Scott, M. H., Fenves, G. L., & Jeremic, B. (2006). Open system for earthquake engineering simulation (OpenSees), Berkeley, California.
[30] Ibarra, L. F., Medina, R. A., & Krawinkler, H. (2005). Hysteretic models that incorporate strength and stiffness deterioration, Earthquake engineering & structural dynamics, 34(12), 1489-1511. doi: 10.1002/eqe.495
[31] Haselton, C. B., & Pacific Earthquake Engineering Research Center. (2008). Beam-column element model calibrated for predicting flexural response leading to global collapse of RC frame buildings, Pacific Earthquake Engineering Research Center.
[32] FEMA, P-695. (2009). Quantification of building seismic performance factors. FEMA
Send comment about this article