[1] Bruno, D., Greco, F., & Lonetti, P. (2008). Dynamic impact analysis of long span cable-stayed bridges under moving loads. Engineering structures, 30(4), 1160-1177. doi: 10.1016/j.engstruct.2007.07.001
[2] Yang, Y. B. (2022). Research on Vehicle-Bridge Interaction Dynamics since 1990s. in IABSE Congress Nanjing 2022 - Bridges and Structures: Connection, Integration and Harmonisation, Report.
[3] Highway, A. A. O. S. & Officials, T. (2020). LRFD bridge design specifications. American Association of State Highway and Transportation Officials (AASHTO).
[4] Chao, Z., Hong, H., Kaiming, B., & Xueyuan, Y. (2020). Dynamic amplification factors for a system with multiple-degrees-of-freedom. Earthquake engineering and engineering vibration, 19, 363-375. doi: 10.1007/s11803-020-0567-9
[5] Yau, J. D., & Urushadze, S. (2024). Resonance reduction for linked train cars moving on multiple simply supported bridges. Journal of Sound and Vibration, 568, 117963. doi: 10.1016/j.jsv.2023.117963
[6] Gharad, A. M., & Sonparote, R. S. (2023). Study of dynamic impact factors of two-track continuous and integral railway bridge subjected to high-speed loads. Electronic Journal of Structural Engineering, 23(3), 19-24. doi: 10.56748/ejse.234203
[7] Gharad, A. M., & Sonparote, R. S. (2021). Evaluation of vertical impact factor coefficients for continuous and integral railway bridges under high-speed moving loads. Earthquake engineering and engineering vibration, 20, 495-504. doi: 10.1007/s11803-021-2034-7
[8] Sheng, G. G., Han, Y., Zhang, Z., & Zhao, L. (2023). Control of nonlinear vibration of beams subjected to moving loads using tuned mass dampers. Acta Mechanica, 234(7), 3019-3036. doi: 10.1007/s00707-023-03544-z
[9] Dong, Y., Zhang, W., Shamsabadi, A., Shi, L., & Taciroglu, E. (2023). A Vehicle–Bridge Interaction Element: Implementation in ABAQUS and Verification. Applied Sciences, 13(15), 8812. doi: 10.3390/app13158812
[10] Safari Honar, F., Mohammadi Dehcheshmeh, E., Broujerdian, V., & Torabi, M. (2022). Nonlinear Dynamic Behavior of Three-Dimensional Moment Steel Frames and Dual System under Vehicle Impact. Civil Infrastructure Researches, 7(2), 21-31. doi: 10.22091/cer.2021.7270.1287 [In Persian]
[11] Frýba, L. (1999). Vibration of solids and structures under moving loads. Thomas Telford.
[12] Timoshenko, S. P., & Young, D. H. (1965). Theory of structures. New York: McGraw-Hill.
[13] Yang, Y. B., Liao, S. S., & Lin, B. H. (1995). Impact formulas for vehicles moving over simple and continuous beams. Journal of Structural Engineering, 121(11), 1644-1650. doi: 10.1061/(ASCE)0733-9445(1995)121:11(1644)
[14] Lei, X., & Noda, N. A. (2002). Analyses of dynamic response of vehicle and track coupling system with random irregularity of track vertical profile. Journal of sound and vibration, 258(1), 147-165. doi: 10.1006/jsvi.2002.5107
[15] Roeder, C. W., Barth, K. E., & Bergman, A. (2004). Effect of live-load deflections on steel bridge performance. Journal of Bridge Engineering, 9(3), 259-267. doi: 10.1061/(ASCE)1084-0702(2004)9:3(259)
[16] Warburton, G. B. (1976). The dynamical behaviour of structures: structures and solid body mechanics series. Elsevier.
[17] Wiriyachai, A., Chu, K. H., & Garg, V. K. (1982). Bridge impact due to wheel and track irregularities. Journal of the Engineering Mechanics Division, 108(4), 648-666. doi: 10.1061/JMCEA3.0002851
[18] Deng, L., Cai, C. S., & Barbato, M. (2011). Reliability-based dynamic load allowance for capacity rating of prestressed concrete girder bridges. Journal of Bridge Engineering, 16(6), 872-880. doi: 10.1061/(ASCE)BE.1943-5592.0000178
[19] Ding, L., Hao, H., & Zhu, X. (2009). Evaluation of dynamic vehicle axle loads on bridges with different surface conditions. Journal of Sound and Vibration, 323(3-5), 826-848. doi: 10.1016/j.jsv.2009.01.051
[20] González, A., Cantero, D., & OBrien, E. J. (2011). Dynamic increment for shear force due to heavy vehicles crossing a highway bridge. Computers & structures, 89(23-24), 2261-2272. doi: 10.1016/j.compstruc.2011.08.009
[21] Kim, C. W., Kawatani, M., & Kwon, Y. R. (2007). Impact coefficient of reinforced concrete slab on a steel girder bridge. Engineering Structures, 29(4), 576-590. doi: 10.1016/j.engstruct.2006.05.021
[22] Cantieni, R. (1983). Dynamic load tests on highway bridges in Switzerland. Rep, 211.
[23] Li, H. (2005). Dynamic response of highway bridges subjected to heavy vehicles. The Florida State University.
[24] Huang, D. (2012). Vehicle-induced vibration of steel deck arch bridges and analytical methodology. Journal of Bridge Engineering, 17(2), 241-248. doi: 10.1061/(ASCE)BE.1943-5592.0000243
[25] Samaan, M., Kennedy, J. B., & Sennah, K. (2007). Impact factors for curved continuous composite multiple-box girder bridges. Journal of Bridge Engineering, 12(1), 80-88. doi: 10.1061/(ASCE)1084-0702(2007)12:1(80)
[26] Schwarz, M., & Laman, J. A. (2001). Response of prestressed concrete I-girder bridges to live load. Journal of Bridge Engineering, 6(1), 1-8. doi: 10.1061/(ASCE)1084-0702(2001)6:1(1)
[27] Wang, T. L., Huang, D., & Shahawy, M. (1992). Dynamic response of multigirder bridges. Journal of Structural Engineering, 118(8), 2222-2238. doi: 10.1061/(ASCE)0733-9445(1992)118:8(2222)
[28] Azimi, H., Galal, K., & Pekau, O. A. (2011). A modified numerical VBI element for vehicles with constant velocity including road irregularities. Engineering Structures, 33(7), 2212-2220. doi: 10.1016/j.engstruct.2011.03.012
[29] Hag-Elsafi, O., Albers, W. F., & Alampalli, S. (2012). Dynamic analysis of the Bentley Creek Bridge with FRP deck. Journal of Bridge Engineering, 17(2), 318-333. doi: 10.1061/(ASCE)BE.1943-5592.0000244
[30] Paultre, P., Chaallal, O., & Proulx, J. (1992). Bridge dynamics and dynamic amplification factors—a review of analytical and experimental findings. Canadian Journal of Civil Engineering, 19(2), 260-278. doi: 10.1139/l92-032
[31] Azimi, H., Galal, K., & Pekau, O. A. (2013). A numerical element for vehicle–bridge interaction analysis of vehicles experiencing sudden deceleration. Engineering Structures, 49, 792-805. doi: 10.1016/j.engstruct.2012.12.031
[32] Chang, D., & Lee, H. (1994). Impact factors for simple-span highway girder bridges. Journal of Structural Engineering, 120(3), 704-715. doi: 10.1061/(ASCE)0733-9445(1994)120:3(704)
[33] González, A., OBrien, E. J., Cantero, D., Li, Y., Dowling, J., & Žnidarič, A. (2010). Critical speed for the dynamics of truck events on bridges with a smooth road surface. Journal of Sound and Vibration, 329(11), 2127-2146. doi: 10.1016/j.jsv.2010.01.002
[34] Yin, X., Fang, Z., Cai, C. S., & Deng, L. (2010). Non-stationary random vibration of bridges under vehicles with variable speed. Engineering Structures, 32(8), 2166-2174. doi: 10.1016/j.engstruct.2010.03.019
[35] Ashebo, D. B., Chan, T. H., & Yu, L. (2007). Evaluation of dynamic loads on a skew box girder continuous bridge Part II: Parametric study and dynamic load factor. Engineering structures, 29(6), 1064-1073. doi: 10.1016/j.engstruct.2006.07.013
[36] Moghimi, H., & Ronagh, H. R. (2008). Impact factors for a composite steel bridge using non-linear dynamic simulation. International Journal of Impact Engineering, 35(11), 1228-1243. doi: 10.1016/j.ijimpeng.2007.07.003
[37] Deng, L., & Cai, C. S. (2010). Development of dynamic impact factor for performance evaluation of existing multi-girder concrete bridges. Engineering Structures, 32(1), 21-31. doi: 10.1016/j.engstruct.2009.08.013
[38] Kwasniewski, L., Wekezer, J., Roufa, G., Li, H., Ducher, J., & Malachowski, J. (2006). Experimental evaluation of dynamic effects for a selected highway bridge. Journal of Performance of Constructed Facilities, 20(3), 253-260. doi: 10.1061/(ASCE)0887-3828(2006)20:3(253)
[39] Harris, N. K., OBrien, E. J., & González, A. (2007). Reduction of bridge dynamic amplification through adjustment of vehicle suspension damping. Journal of Sound and Vibration, 302(3), 471-485. doi: 10.1016/j.jsv.2006.11.020
[40] Szurgott, P., Wekezer, J., Kwasniewski, L., Siervogel, J., & Ansley, M. (2011). Experimental assessment of dynamic responses induced in concrete bridges by permit vehicles. Journal of Bridge Engineering, 16(1), 108-116. doi: 10.1061/(ASCE)BE.1943-5592.0000119
[41] Deng, L., Yu, Y., Zou, Q., & Cai, C. S. (2015). State-of-the-art review of dynamic impact factors of highway bridges. Journal of Bridge Engineering, 20(5), 04014080. doi: 10.1061/(ASCE)BE.1943-5592.0000672
[42] Zhang, W. M., Chen, J., Tian, G. M., & Lu, X. F. (2023, July). Analytical algorithm for the full-bridge response of hybrid cable-stayed suspension bridges under a horizontal transverse live load. In Structures, 53, 132-148. doi: 10.1016/j.istruc.2023.04.048
[43] Park, J., Yoon, J., Park, C., & Lee, J. (2023). Studying the Cable Loss Effect on the Seismic Behavior of Cable-Stayed Bridge. Applied Sciences, 13(9), 5636. doi: 10.3390/app13095636
[44] Au, F. T. K., Wang, J. J., & Cheung, Y. K. (2001). Impact study of cable-stayed bridge under railway traffic using various models. Journal of Sound and Vibration, 240(3), 447-465. doi: 10.1006/jsvi.2000.3236
[45] Au, F. T. K., Wang, J. J., & Cheung, Y. K. (2002). Impact study of cable-stayed railway bridges with random rail irregularities. Engineering Structures, 24(5), 529-541. doi: 10.1016/S0141-0296(01)00119-5
[46] Yang, F., & Fonder, G. A. (1998). Dynamic response of cable-stayed bridges under moving loads. Journal of engineering mechanics, 124(7), 741-747. doi: 10.1061/(ASCE)0733-9399(1998)124:7(741)
[47] Ji, Y., & Kim, Y. J. (2019). State-of-the-art review of bridges under rail transit loading. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 172(6), 451-466. doi: 10.1680/jstbu.18.00005
[48] Yau, J. D., & Yang, Y. B. (2004). Vibration reduction for cable-stayed bridges traveled by high-speed trains. Finite elements in analysis and design, 40(3), 341-359. doi: 10.1016/S0168-874X(03)00051-9
[49] Zhang, N., Xia, H., & Guo, W. (2008). Vehicle–bridge interaction analysis under high-speed trains. Journal of Sound and Vibration, 309(3-5), 407-425. doi: 10.1016/j.jsv.2007.07.064
[50] Mu, D., Gwon, S. G., & Choi, D. H. (2016). Dynamic responses of a cable-stayed bridge under a high speed train with random track irregularities and a vertical seismic load. International Journal of Steel Structures, 16, 1339-1354. doi: 10.1007/s13296-016-0104-x
[51] Zaman, M., Taheri, M. R., & Khanna, A. (1996). Dynamic response of cable-stayed bridges to moving vehicles using the structural impedance method. Applied mathematical modelling, 20(12), 877-889. doi: 10.1016/S0307-904X(96)00094-7
[52] Zhu, Z., Wang, L., Davidson, M. T., Harik, I. E., & Patil, A. (2019). Nonlinear dynamic analysis of long-span cable-stayed bridges with train–bridge and cable coupling. International Journal of Advanced Structural Engineering, 11, 271-283. doi: 10.1007/s40091-019-0229-1
[53] Zhang, H., & Xie, X. (2011). Dynamic responses of cable-stayed bridges to vehicular loading including the effects of the local vibration of cables. Journal of Zhejiang University-SCIENCE A, 12(8), 593-604. doi: 10.1631/jzus.A1000351
[54] Huang, D., Wang, T. L., & Shahawy, M. (1992). Impact analysis of continuous multigirder bridges due to moving vehicles. Journal of Structural Engineering, 118(12), 3427-3443. doi: 10.1061/(ASCE)0733-9445(1992)118:12(3427)
[55] Huang, D., & Wang, T. L. (1992). Impact analysis of cable-stayed bridges. Computers & Structures, 43(5), 897-908. doi: 10.1016/0045-7949(92)90304-I
[56] Calçada, R., Cunha, A., & Delgado, R. (2005). Analysis of traffic-induced vibrations in a cable-stayed bridge. Part I: Experimental assessment. Journal of Bridge Engineering, 10(4), 370-385. doi: 10.1061/(ASCE)1084-0702(2005)10:4(370)
[57] Bridge Loading Regulations (Publication 139). Management and Planning Organization of Iran. [In Persian]
[58] Wu, J. S., Lee, M. L., & Lai, T. S. (1987). The dynamic analysis of a flat plate under a moving load by the finite element method. International Journal for Numerical Methods in Engineering, 24(4), 743-762. doi: 10.1002/nme.1620240407
[59] Fathali, M. A., Dehghani, E., & Hoseini Vaez, S. R. (2020). An approach for adjusting the tensile force coefficient in equivalent static cable-loss analysis of the cable-stayed bridges. In Structures, 25, 720-729. doi: 10.1016/j.istruc.2020.03.054
[60] Wang, P. H., Tang, T. Y., & Zheng, H. N. (2004). Analysis of cable-stayed bridges during construction by cantilever methods. Computers & Structures, 82(4-5), 329-346. doi: 10.1016/j.compstruc.2003.11.003
[61] Wilcox, R. R. (2011). Introduction to robust estimation and hypothesis testing. Academic press.
Send comment about this article